Part Number Hot Search : 
385006 4AHCT1 ARD5004H HCP1500 09500 N76E00 FML0520L BUV89
Product Description
Full Text Search
 

To Download A3PN250-1VQ100 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  april 2010 i ? 2010 actel corporation proasic3 nano flash fpgas features and benefits wide range of features ? 10 k to 250 k system gates ? up to 36 kbits of true dual-port sram ? up to 71 user i/os reprogrammable flash technology ? 130-nm, 7-layer metal (6 copper), flash-based cmos process ? live at power-up (lapu) level 0 support ? single-chip solution ? retains programmed design when powered off high performance ? 350 mhz system performance in-system programming (isp) and security ? secure isp using on-chip 128-bit advanced encryption standard (aes) decryption via jtag (ieee 1532?compliant) ? ? flashlock ? to secure fpga contents low power ? low power proasic ? 3 nano products ? 1.5 v core voltage for low power ? support for 1.5 v-only systems ? low-impedance flash switches high-performance routing hierarchy ? segmented, hierarchical routing and clock structure advanced i/os ? 1.5 v, 1.8 v, 2.5 v, and 3.3 v mixed-voltage operation ? bank-selectable i/o voltages?up to 4 banks per chip ? single-ended i/o standards: lvttl, lvcmos 3.3 v / 2.5 v / 1.8 v / 1.5 v ? wide range power supply voltage support per jesd8-b, allowing i/os to operate from 2.7 v to 3.6 v ? i/o registers on input, output, and enable paths ? selectable schmitt trigger inputs ? hot-swappable and cold-sparing i/os ? programmable output slew rate ? and drive strength ? weak pull-up/-down ? ieee 1149.1 (jtag) boundary scan test ? pin-compatible packages across the proasic3 family clock conditioning circuit (ccc) and pll ? ? up to six ccc blocks, one with an integrated pll ? configurable phase shift, multiply/divide, delay capabilities and external feedback ? wide input frequency range (1.5 mhz to 350 mhz) embedded memory ? 1 kbit of flashrom user nonvolatile memory ? srams and fifos with variable-aspect-ratio 4,608-bit ram blocks (1, 2, 4, 9, and 18 organizations) ? ? true dual-port sram (except 18 organization) ? enhanced commercial temperature range ? ?20c to +70c ? a3pn030 and smaller devices do not support this feature. table 1 ? proasic3 nano devices proasic3 nano devices a3pn010 a3pn015 a3pn020 a3pn060 a3pn125 a3pn250 proasic3 nano-z devices a3pn030z 1 a3pn060z a3pn125z a3n250z system gates 10k 15k 20k 30k 60k 125k 250k typical equivalent macrocells 86 128 172 256 512 1,024 2,048 versatiles (d-flip-flops) 260 384 520 768 1,536 3,072 6,144 ram kbits (1,024 bits) 2 ? ? ? ? 18 36 36 4,608-bit blocks 2 ?? ? ? 488 flashrom bits 1 k 1 k 1 k 1 k 1 k 1 k 1 k secure (aes) isp 2 ? ? ? ? yes yes yes integrated pll in cccs 2 ?? ? ? 111 versanet globals 4 4 4 6 18 18 18 i/o banks 2 3 3 2 2 2 4 maximum user i/os (packaged device) 34 49 49 77 71 71 68 maximum user i/os (known good die) 34 ? 52 83 71 71 68 package pins qfn vqfp qn48 qn68 qn68 qn48, qn68 vq100 vq100 vq100 vq100 notes: 1. a3pn030 is available in the z feature grade only. 2. a3pn030 and smaller devices do not support this feature. 3. for higher densities and support of additional features, refer to the proasic3 and proasic3e handbooks. revision 8 ?
proasic3 nano flash fpgas ii revision 8 i/os per package proasic3 nano device status proasic3 nano devices a3pn010 a3pn015 a3pn020 a3pn060 a3pn125 a3pn250 proasic3 nano-z devices a3pn030z 1 a3pn060 a3pn125z a3pn250z known good die 34 ? 52 83 71 71 68 qn48 34 34 qn68 49 49 49 vq100 77 71 71 68 notes: 1. a3pn030 is available in the z feature grade only. 2. when considering migrating your design to a lower- or higher-density device, refer to the proasic3 handbook to ensure compliance with design and b oard migration requirements. 3. "g" indicates rohs-compliant packages. refer to "proasic3 nano ordering information" on page iii for the location of the "g" in the part number. for nano devices, the vq100 package is of fered in both leaded and rohs-compliant versions. all other packages are rohs-compliant only. table 2 ? proasic3 nano fpgas package sizes dimensions packages qn48 qn68 vq100 length width (mm\mm) 6 x 6 8 x 8 14 x 14 nominal area (mm2) 36 64 196 pitch (mm) 0.4 0.4 0.5 height (mm) 0.90 0.90 1.20 proasic3 nano devices status proasic3 nano-z devices status a3pn010 production a3pn015 production a3pn020 production a3pn030z production a3pn060 advance a3pn060z advance a3pn125 advance a3pn125z advance a3pn250 production a3pn250z production
proasic3 nano flash fpgas revision 8 iii proasic3 nano ordering information device marking actel normally topside marks the full ordering part number on each dev ice. there are some exceptions to this, such as some of t he z feature grade nano devices, the v2 designat or for igloo devices, and pa ckages where space is physically limited. packages tha t have limited characters available are uc36, uc81, cs81, qn48, qn68, and qfn132. on these specific packages, a subset of the device marking will be used that includes the required legal info rmation and as much of the part number as allowed by character limitation of the device. in this case, devices will have a trunc ated device marking and may exclude the applications markings, such as the i designator for industrial devices or the es designator for engineering samples. note: *for the a3pn060, a3pn125, and a3pn250, the z feature gr ade does not support the enhanc ed nano features of schmitt trigger input, cold-sparing, and hot-swap i/o capability. the a3 pn030 z feature grade does not support schmitt trigger input. for the vq100, cs81, uc81, qn68, and qn48 packages, the z feature grade and the n part number are not marked on the device. a3pn010 = 10,000 system gates a3pn015 = 15,000 system gates a3pn020 = 20,000 system gates a3pn030 = 30,000 system gates a3pn060 = 60,000 system gates a3pn125 = 125,000 system gates a3pn250 = 250,000 system gates speed grade blank = standard blank = standard feature grade z = nano devices without enhanced features a3pn250 z 1 vq _ part number proasic3 nano devices package type vq = very thin quad flat pack (0.5 mm pitch) dielot = known good die qn = quad flat pack no leads (0.4 mm and 0.5 mm pitches) 100 i package lead count g lead-free packaging application (temperature range) blank = commercial ( ? 20c to +70c ambient temperature) i = industrial ( ? 40c to +85c ambient temperature) blank = standard packaging g= rohs-compliant packaging pp = pre-production es = engineering sample (room temperature only) * 1 = 15% faster than standard 2 = 25% faster than standard
proasic3 nano flash fpgas iv revision 8 figure 1 shows an example of device marking based on the agl030v5 -ucg81. the actual mark will vary by the device/package combination ordered. proasic3 nano product availabl e in the z feature grade temperature grade offerings speed grade and temperature grade matrix contact your local actel representative for device availability: http://www.actel.com /contact/default.aspx . figure 1 ? example of device marking fo r small form factor packages devices a3pn030 a3pn060 a3pn125 a3pn250 packages qn48 ? ? ? qn68 ? ? ? vq100 vq100 vq100 vq100 proasic3 nano devices a3pn010 a3pn015 a3pn020 a3pn060 a3pn125 a3pn250 proasic3 nano-z devices a3pn030z 1 a3pn060z a3pn125z a3pn250z qn48 c, i ? ? c, i ? ? ? qn68 ? c, i c, i c, i ? ? ? vq100 ? ? ? c, i c, i c, i c, i notes: 1. a3pn030 is available in the z feature grade only. 2. c = commercial temperature range: ?20c to 70c ambient temperature 3. i = industrial temperature range: ?40c to 85c ambient temperature temperature grade std. c 1 ? i 2 ? notes: 1. c = commercial temperature range: ?20c to 70c ambient temperature. 2. i = industrial temperature range: ?40c to 85c ambient temperature. actelxxx agl030yww ucg81xxxx xxxxxxxx country of origin date code customer mark (if applicable) device name (six characters) package wafer lot #
proasic3 nano flash fpgas revision 8 v table of contents proasic3 nano device overview general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 proasic3 nano dc and sw itching characteristics general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 calculating power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 user i/o characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 versatile characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49 global resource characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-53 clock conditioning circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-57 embedded sram and fifo characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-59 embedded flashrom characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69 jtag 1532 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70 actel safety critical, life support, and high-reliability applications policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70 package pin assignments 48-pin qfn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 68-pin qfn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 100-pin vqfp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 datasheet information list of changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 datasheet categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 actel safety critical, life support, and high-reliability applications policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

revision 8 1-1 1 ? proasic3 nano device overview general description proasic3, the third-generation family of actel flas h fpgas, offers performanc e, density, and features beyond those of the proasic plus ? family. nonvolatile flash technology gives proasic3 nano devices the advantage of being a secure, low power, single-chip solution that is live at power-up (lapu). proasic3 nano devices are reprogrammable and offe r time-to-market benefits at an asic-level unit cost. these features enable designe rs to create high-density syst ems using existing asic or fpga design flows and tools. proasic3 nano devices offer 1 kbit of on-chip, re programmable, nonvolatile flashrom storage as well as clock conditioning circuitry based on an integrated phase-locked loop (pll). a3pn030 and smaller devices do not have pll or ram support. proasic3 nano devices have up to 250,000 system gates, supported with up to 36 kbits of true dual-port sram and up to 71 user i/os. proasic3 nano devices increase the breadth of the pr oasic3 product line by adding new features and packages for greater customer value in high volume consumer, portable, and battery-backed markets. added features include smaller footprint packages designed with two-layer pcbs in mind, low power, hot-swap capability, and schmitt trigger for greater fl exibility in low-cost and power-sensitive applications. flash advantages reduced cost of ownership advantages to the designer extend beyond low unit cost, performance, and ease of use. unlike sram- based fpgas, flash-based proasic3 nano devices a llow all functionality to be live at power-up; no external boot prom is required. on-board securi ty mechanisms prevent access to all the programming information and enable secure remote updates of th e fpga logic. designers can perform secure remote in-system reprogramming to support future design iterations and field upgra des with confidence that valuable intellectual property (ip) cannot be compro mised or copied. secure isp can be performed using the industry-standard aes algorithm. the proasic3 nano device architecture mitigates the need for asic migration at higher user volumes. this make s the proasic3 nano device a cost-effective asic replacement solution, especially for applicatio ns in the consumer, networking/communications, computing, and avionics markets. with a variety of devices under $1, actel proasic3 nano fpgas enable cost-effective implementation of programmable logic and quick time to market. security nonvolatile, flash-based proasic3 nano devices do no t require a boot prom, so there is no vulnerable external bitstream that can be ea sily copied. proasic3 nano devices incorporate flashlock, which provides a unique combination of reprogrammabilit y and design security without external overhead, advantages that only an fpga with n onvolatile flash programming can offer. proasic3 nano devices utilize a 128-bit flash-based lock and a separate aes key to secure programmed intellectual property and configuration da ta. in addition, all flashrom data in proasic3 nano devices can be encrypted prior to loading, using the industry-leading aes-128 (fips192) bit block cipher encryption standard. the aes standard was ad opted by the national inst itute of standards and technology (nist) in 2000 and replaces the 1977 des standard. proasic3 nano devices have a built-in aes decryption engine and a flash-based aes ke y that make them t he most comprehensive programmable logic device security solution avai lable today. proasic3 nano devices with aes-based security allow for secure, remote field updates over public networks such as the internet, and ensure that valuable ip remains out of the hands of system ov erbuilders, system cloners, and ip thieves. the contents of a programmed proasic3 nano device cannot be read back, although secure design verification is possible. security, built into the fpga fabric, is an inheren t component of proasic3 nano devices. the flash cells are located beneath seven metal layers, and many device design and layout techniques have been used
proasic3 nano device overview 1-2 revision 8 to make invasive attacks extremely difficult. proasic3 nano devices, with flashlock and aes security, are unique in being highly resistant to both invasive and noninvasive attacks. your valuable ip is protected and secure, making remote isp possibl e. a proasic3 nano device provides the most impenetrable security for programmable logic designs. single chip flash-based fpgas store their configuration informati on in on-chip flash cells. once programmed, the configuration data is an inherent part of the fpga st ructure, and no external configuration data needs to be loaded at system power-up (unlike sram-based fpgas). therefore, flash-based proasic3 nano fpgas do not require system configuration compo nents such as eeproms or microcontrollers to load device configuration data. this reduces bill-of-materi als costs and pcb area, and increases security and system reliability. live at power-up actel flash-based proasic3 nano devices support level 0 of the lapu classification standard. this feature helps in system component in itialization, execution of critic al tasks before the processor wakes up, setup and configuration of memory blocks, cl ock generation, and bus activity management. the lapu feature of flash-based proasic3 nano devices greatly simplifies total system design and reduces total system cost, often eliminating the need for cp lds and clock generation plls that are used for these purposes in a system. in addition, glitches and brownouts in system power will not corrupt the proasic3 nano device's flash configuration, and un like sram-based fpgas, the device will not have to be reloaded when system power is restored. this enab les the reduction or complete removal of the configuration prom, expensive voltage monitor, br ownout detection, and clock generator devices from the pcb design. flash-based proasic3 nano devices simplify total system design and reduce cost and design risk while increas ing system reliability and impr oving system init ialization time. firm errors firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an sram fpga. the energ y of the collision can ch ange the state of the configuration cell and thus change t he logic, routing, or i/o behavior in an unpredictable way. these errors are impossible to prevent in sram fpgas. the consequence of this type of error can be a complete system failure. firm errors do not exist in the configuration memory of proasic3 nano flash- based fpgas. once it is programmed, the flash cell configuration element of proasic3 nano fpgas cannot be altered by high-energy ne utrons and is therefor e immune to them. recoverable (or soft) errors occur in the user data sram of all fpga devices. these can easily be mitigated by using error detection and correction (edac) circuitry built into the fpga fabric. low power flash-based proasic3 nano devices exhibit power ch aracteristics similar to an asic, making them an ideal choice for power-sensitive applications. proasi c3 nano devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many fpgas. proasic3 nano devices also have low dynamic powe r consumption to further maximize power savings. advanced flash technology proasic3 nano devices offer many benefits, includ ing nonvolatility and reprogrammability through an advanced flash-based, 130-nm lvcmos process with seven layers of metal. standard cmos design techniques are used to implement logic and contro l functions. the combination of fine granularity, enhanced flexible routing resources, and abundant fl ash switches allows for very high logic utilization without compromising device routability or perform ance. logic functions within the device are interconnected through a four-level routing hierarchy. advanced architecture the proprietary proasic3 nano architecture provid es granularity comparable to standard-cell asics. the proasic3 nano device consists of five dist inct and programmable architectural features ( figure 1-3 to figure 1-4 on page 1-4 ): ? fpga versatiles
proasic3 nano flash fpgas revision 8 1-3 ? dedicated flashrom ? dedicated sram/fifo memory ? extensive cccs and plls ? advanced i/o structure note: *bank 0 for the a3pn030 device figure 1-1 ? proasic3 device architecture overvi ew with two i/o banks and no ram (a3pn010 and a3pn030) figure 1-2 ? proasic3 nano architecture overview with three i/o banks and no ram (a3pn015 and a3pn020) versatile i/os user nonvolatile flashrom c har g e pumps bank 1* bank 1 bank 0 bank 1 ccc - g l versatile i/os user nonvolatile flashrom c har g e pumps bank 1 bank 2 bank 0 bank 1 ccc - g l
proasic3 nano device overview 1-4 revision 8 the fpga core consists of a sea of versatiles. each versatile can be configured as a three-input logic function, a d-flip-flop (with or without enable), or a latch by progr amming the appropriate flash switch interconnections. the versatility of the proasic3 nano co re tile as either a three-input lookup table (lut) equivalent or as a d-flip-flop/latch with enable allows for efficient use of the fpga fabric. the versatile . figure 1-3 ? proasic3 nano device architecture overview with two i/o banks (a3pn060 and a3pn125) figure 1-4 ? proasic3 nano device architecture overview with four i/o banks (a3pn250) ram blo c k 4, 6 08-bit dual-port s ram or fifo blo c k versatile ccc i/os i s p ae s de c ryption user nonvolatile flashrom c har g e pumps bank 0 bank 1 bank 1 bank 0 bank 0 bank 1 ram blo c k 4, 6 08-bit dual-port s ram or fifo blo c k versatile ccc i/os i s p ae s de c ryption user nonvolatile flashrom c har g e pumps bank 0 bank 3 bank 3 bank 1 bank 1 bank 2
proasic3 nano flash fpgas revision 8 1-5 capability is unique to the actel proasic3 family of third-generation architecture flash fpgas. versatiles are connected with any of the four levels of routing hierarchy. flas h switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programm ing. maximum core utilization is possible for virtually any design. in addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 v) programming of proasic3 nano devices via an ieee 1532 jtag interface. versatiles the proasic3 nano core consists of versatile s, which have been enhan ced beyond the proasic plus ? core tiles. the proasic3 nano versatile supports the following: ? all 3-input logic functions?lut-3 equivalent ? latch with clear or set ? d-flip-flop with clear or set ? enable d-flip-flop with clear or set refer to figure 1-5 for versatile configurations. user nonvolatile flashrom actel proasic3 nano devices have 1 kbit of on-c hip, user-accessible, nonvolatile flashrom. the flashrom can be used in diverse system applications: ? internet protocol addressing (wireless or fixed) ? system calibration settings ? device serialization and/or inventory control ? subscription-based business models (for example, set-top boxes) ? secure key storage for secure communications algorithms ? asset management/tracking ? date stamping ? version management the flashrom is written using the standard proa sic3 nano ieee 1532 jtag programming interface. the core can be individually programmed (erased and written), and on-chip aes decryption can be used selectively to securely load data over public networ ks (except in the a3pn030 and smaller devices), as in security keys stored in the fl ashrom for a user design. the flashrom can be programmed via the jtag progr amming interface, and its contents can be read back either through the jtag programming interface or via direct fpga core addressing. note that the flashrom can only be programmed from the jtag interface and cannot be programmed from the internal logic array. the flashrom is programmed as 8 banks of 128 bits ; however, reading is performed on a byte-by-byte basis using a synchronous interface. a 7-bit address fr om the fpga core defines which of the 8 banks and which of the 16 bytes within that bank are being read. the three most significant bits (msbs) of the flashrom address determine the bank, and the four least significant bits (lsbs) of the flashrom address define the byte. figure 1-5 ? versatile configurations x1 y x2 x3 lut-3 data y c lk ena b le c lr d-ff data y c lk c lr d-ff lut-3 equivalent d-flip-flop with clear or s et enable d-flip-flop with clear or s et
proasic3 nano device overview 1-6 revision 8 the actel proasic3 nano development software solutions, libero ? integrated design environment (ide) and designer, have extensive support for the fl ashrom. one such featur e is auto-generation of sequential programming files for applications requir ing a unique serial number in each part. another feature enables the inclusion of static data for system version control. data for the flashrom can be generated quickly and easily using actel libero ide and designer software tools. comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing flashrom contents. sram and fifo proasic3 nano devices (except th e a3pn030 and smaller devices) have embedded sram blocks along their north and south sides. each variable-aspect-rati o sram block is 4,608 bits in size. available memory configurations ar e 25618, 5129, 1k4, 2k2, and 4k1 bits. the in dividual blocks have independent read and write ports that can be confi gured with different bit widths on each port. for example, data can be sent through a 4-bit port and read as a single bitstream. the embedded sram blocks can be initialized via the device jtag port (rom emulation mode) using the ujtag macro (except in a3pn030 and smaller devices). in addition, every sram block has an embedded fi fo control unit. the contro l unit allows the sram block to be configured as a synchronous fifo with out using additional core versatiles. the fifo width and depth are programmable. the fi fo also features programmabl e almost empty (aempty) and almost full (afull) flags in addition to the norma l empty and full flags. the embedded fifo control unit contains the counters necessary for generati on of the read and write address pointers. the embedded sram/fifo blocks can be cascaded to create larger configurations. pll and ccc higher density proasic3 nano devices using either the two i/o bank or four i/o bank architectures provide the designer with very flexible clock co nditioning capabilities. a3pn060, a3pn125, and a3pn250 contain six cccs. one ccc (center west side) has a pll. the a3pn030 and smaller devices use different cccs in their arch itecture. these ccc-gls contain a global mux but do not have any plls or programmable delays. for devices using the six ccc block architecture, these six ccc blocks are located at the four corners and the centers of the east and west sides. all six ccc blocks are usable; the four corner cccs and the east ccc allo w simple clock delay operations as well as clock spine access. the inpu ts of the six ccc blocks are accessible from the fpga core or from dedicated connections to the ccc block, which are located near the ccc. the ccc block has these key features: ? wide input frequency range (f in_ccc ) = 1.5 mhz to 350 mhz ? output frequency range (f out_ccc ) = 0.75 mhz to 350 mhz ? clock delay adjustment via programmable a nd fixed delays from ?7.56 ns to +11.12 ns ? 2 programmable delay types for clock skew minimization ? clock frequency synthesis (for pll only) additional ccc specifications: ? internal phase shift = 0, 90, 180, and 270. output phase shift depends on the output divider configuration (for pll only). ? output duty cycle = 50% 1.5% or better (for pll only) ? low output jitter: worst case < 2.5% clock per iod peak-to-peak period jitter when single global network used (for pll only) ? maximum acquisition time = 300 s (for pll only) ? low power consumption of 5 mw ? exceptional tolerance to input period jitter?allowabl e input jitter is up to 1.5 ns (for pll only) ? four precise phases; maximum misalignment between adjacent phases of 40 ps (350 mhz / f out_ccc ) (for pll only)
proasic3 nano flash fpgas revision 8 1-7 global clocking proasic3 nano devices have extensive support for mu ltiple clocking domains. in addition to the ccc and pll support described above, there is a co mprehensive global clock distribution network. each versatile input and output port has access to nine versanets: six chip (main) and three quadrant global networks. the versanets can be driven by the ccc or directly accessed from the core via multiplexers (muxes). the versanets can be used to distribute low-skew clock signals or for rapid distribution of high fanout nets. i/os with advanced i/o standards proasic3 nano fpgas feature a flexible i/o structure, supporting a range of voltages (1.5 v, 1.8 v, 2.5 v, and 3.3 v). the i/os are organized into banks, with two, three, or four banks per device. t he configuration of these banks determines the i/o standards supported. each i/o module contains several input, output, and enable registers. these registers allow the implementation of various single-data-rate applicatio ns for all versions of nano devices and double-data- rate applications for the a3pn060, a3pn125, and a3pn250 devices. proasic3 nano devices support lvttl and lvcmos i/o standards, are hot-swappable, and support cold-sparing and schmitt trigger. hot-swap (also called hot-plug, or hot-insertion) is t he operation of hot-insertion or hot-removal of a card in a powered-up system. cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating. wide range i/o support actel nano devices support jedec-defined wide range i/o operation. proasic3 nano supports the jesd8-b specification, covering both 3 v and 3.3 v supplies, for an effective operating range of 2.7 v to 3.6 v. wider i/o range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components wit h greater tolerances. wide range eases i/o bank management and provides enhanc ed protection from system voltage sp ikes, while providing the flexibility to easily run custom voltage applications.

revision 8 2-1 2 ? proasic3 nano dc and switching characteristics general specifications the z feature grade does not support the enhanced na no features of schmitt tr igger input, cold-sparing, and hot-swap i/o capability. refer to the ordering information in the proasic3 nano product brief for more information. dc and switching characteristics for ?f speed grade targets are based only on simulation. the characteristics provided for the ?f speed grade are subject to change after establishing fpga specifications. some restrictions might be added and will be reflected in future revisions of this document. the ?f speed grade is only suppo rted in the commercial temperature range. operating conditions stresses beyond those listed in ta b l e 2 - 1 may cause permanent damage to the device. exposure to absolute maximum rating conditions for extended periods may affect device reliability. absolute maximum ratings are stress ratings only; functional operation of th e device at these or any other conditions beyond those listed under the recommended o perating conditions specified in table 2-2 on page 2-2 is not implied. table 2-1 ? absolute maximum ratings symbol parameter limits units vcc dc core supply voltage ?0.3 to 1.65 v vjtag jtag dc voltage ?0.3 to 3.75 v vpump programming voltage ?0.3 to 3.75 v vccpll analog power supply (pll) ?0.3 to 1.65 v vcci dc i/o output buffer supply voltage ?0.3 to 3.75 v vi i/o input voltage ?0.3 v to 3.6 v v t stg 1 storage temperature ?65 to +150 c t j 1 junction temperature +125 c notes: 1. for flash programming and retention maximum limits, refer to table 2-3 on page 2-2 , and for recommended operating limits, refer to table 2-2 on page 2-2 . 2. the device should be operated within the limits specified by the datasheet. during transitions, the input signal may undershoot or overshoot according to the limits shown in table 2-4 on page 2-3 .
proasic3 nano dc and switching characteristics 2-2 revision 8 table 2-2 ? recommended operating conditions 1, 2 symbol parameter extended commercial industrial units t a ambient temperature ?20 to +70 2 ?40 to +85 2 c t j junction temperature ?20 to +85 ?40 to +100 c vcc 3 1.5 v dc core supply voltage 1.425 to 1.575 1.425 to 1.575 v vjtag jtag dc voltage 1.4 to 3.6 1.4 to 3.6 v vpump 4 programming voltage programming mode 3.15 to 3.45 3.15 to 3.45 v operation 4 0 to 3.6 0 to 3.6 v vccpll 5 analog power supply (pll) 1.5 v dc core supply voltage 3 1.425 to 1.575 1.425 to 1.575 v vcci and vmv 7 1.5 v dc supply voltage 1.425 to 1.575 1.425 to 1.575 v 1.8 v dc supply voltage 1.7 to 1.9 1.7 to 1.9 v 2.5 v dc supply voltage 2.3 to 2.7 2.3 to 2.7 v 3.3 v dc supply voltage 3.0 to 3.6 3.0 to 3.6 v 3.3 v wide range supply voltage 6 2.7 to 3.6 2.7 to 3.6 v notes: 1. all parameters representing voltages are measured with respect to gnd unless otherwise specified. 2. to ensure targeted reliability standards are met across ambient and junction operating temperatures, actel recommends that the user follow best design practices using actel?s timing and power simulation tools. 3. the ranges given here are for power supplies only. t he recommended input voltage ranges specific to each i/o standard are given in table 2-14 on page 2-16 . vmv and v cci should be at the same voltage within a given i/o bank. 4. v pump can be left floating during operation (not programming mode). 5. vccpll pins should be tied to vcc pins. see the "pin descriptions and packaging" chapter for further information. 6. 3.3 v wide range is compliant to the jesd8-b specification and supports 3.0 v vcci operation. 7. vmv pins must be connected to the corresponding vcci pins. see the "pin descriptions and packaging" chapter for further information. table 2-3 ? flash programming limits ? retention, storage and operating temperature 1 product grade programming cycles program retention (biased/unbiased) maximum storage temperature t stg (c) 2 maximum operating junction temperature t j (c) 2 commercial 500 20 years 110 100 industrial 500 20 years 110 100 notes: 1. this is a stress rating only; functional operation at any condition other than those indicated is not implied. 2. these limits apply for program/data retention only. refer to table 2-1 on page 2-1 and table 2-2 for device operating conditions and absolute limits.
proasic3 nano flash fpgas revision 8 2-3 i/o power-up and supply voltage thresholds for power-on reset (commercial and industrial) sophisticated power-up management circui try is designed into every proasic ? 3 device. these circuits ensure easy transition from the powered-off state to the powered-up state of the device. the many different supplies can power up in any sequence with mi nimized current spikes or surges. in addition, the i/o will be in a known state through the power-up sequence. the basic principle is shown in figure 2-1 on page 2-4 . there are five regions to consider during power-up. proasic3 i/os are activated only if all of the following three conditions are met: 1. vcc and vcci are above the minimum specified trip points ( figure 2-1 on page 2-4 ). 2. vcci > vcc ? 0.75 v (typical) 3. chip is in the operating mode. vcci trip point: ramping up: 0.6 v < trip_point_up < 1.2 v ramping down: 0.5 v < trip_point_down < 1.1 v vcc trip point: ramping up: 0.6 v < trip_point_up < 1.1 v ramping down: 0.5 v < trip_point_down < 1 v vcc and vcci ramp-up trip points are about 100 mv hi gher than ramp-down trip points. this specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. note the following: ? during programming, i/os become tristated and weakly pulled up to vcci. ? jtag supply, pll power supplies, and charge pump vpump supply have no influence on i/o behavior. pll behavior at brownout condition actel recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. power ramp-up should be monotonic at least until vcc and vccpllx exceed brownout activation levels. the vcc activation level is specified as 1.1 v worst-case (see figure 2-1 on page 2-4 for more details). when pll power supply voltage and/or vcc levels drop below the vcc brownout levels (0.75 v 0.25 v), the pll output lock signal goes low and/ or the output clock is lost. refer to the "power-up/-down behavior of low po wer flash devices" chapter of the proasic3 nano device family user?s guide for information on clock and lock recovery. table 2-4 ? overshoot and undershoot limits 1 vcci and vmv average vcci?gnd overshoot or undershoot duration as a percentage of clock cycle 2 maximum overshoot/ undershoot 2 2.7 v or less 10% 1.4 v 5% 1.49 v 3 v 10% 1.1 v 5% 1.19 v 3.3 v 10% 0.79 v 5% 0.88 v 3.6 v 10% 0.45 v 5% 0.54 v notes: 1. based on reliability requirements at 85c. 2. the duration is allowed at one out of si x clock cycles. if the overshoot/unders hoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 v.
proasic3 nano dc and switching characteristics 2-4 revision 8 internal power-up activation sequence 1. core 2. input buffers 3. output buffers, after 200 ns delay from input buffer activation figure 2-1 ? i/o state as a function of vcci and vcc voltage levels re g ion 1: i/o b uffers are off re g ion 2: i/o b uffers are on. i/os are fun c tional b ut slower b e c ause v cc i /v cc are b elow spe c ifi c ation. for the same reason, input b uffers d o not meet v ih /v il levels, an d output b uffers d o not meet v oh /v ol levels. min v cc i d atasheet spe c ifi c ation volta g e at a sele c te d i/o stan d ar d ; i.e., 1.425 v or 1.7 v or 2.3 v or 3.0 v v cc v cc = 1.425 v re g ion 1: i/o buffers are off a c tivation trip point: v a = 0.85 v 0.25 v dea c tivation trip point: v d = 0.75 v 0.25 v a c tivation trip point: v a = 0.9 v 0.3 v dea c tivation trip point: v d = 0.8 v 0.3 v v cc = 1.575 v re g ion 5: i/o b uffers are on an d power supplies are within spe c ifi c ation. i/os meet the entire d atasheet an d timer spe c ifi c ations for spee d , v ih /v il , v oh /v ol , et c . re g ion 4: i/o b uffers are on. i/os are fun c tional b ut slower b e c ause v cc i is b elow spe c ifi c ation. for the same reason, input b uffers d o not meet v ih /v il levels, an d output b uffers d o not meet v oh /v ol levels. where vt c an b e from 0.58 v to 0.9 v (typi c ally 0.75 v) v cc i re g ion 3: i/o b uffers are on. i/os are fun c tional; i/o d c spe c ifi c ations are met, b ut i/os are slower b e c ause the v cc is b elow spe c ifi c ation. v cc = v cc i + vt
proasic3 nano flash fpgas revision 8 2-5 thermal characteristics introduction the temperature variable in the actel designer soft ware refers to the junction temperature, not the ambient temperature. this is an important distin ction because dynamic and static power consumption cause the chip junction to be hi gher than the ambi ent temperature. eq 1 can be used to calculate junction temperature. t j = junction temperature = t + t a eq 1 where: t a = ambient temperature t = temperature gradient between junction (silicon) and ambient t = ja * p ja = junction-to-ambient of the package. ja numbers are located in table 2-5 . p = power dissipation package thermal characteristics the device junction-to-case thermal resistivity is jc and the junction-to-ambient air thermal resistivity is ja . the thermal characteristics for ja are shown for two air flow rates. the absolute maximum junction temperature is 100c. eq 2 shows a sample calculation of the absolute maximum power dissipation allowed for a 484-pin fbga package at commercial temperature and in still air. eq 2 temperature and voltage derating factors maximum power allowed max. junction temp. ( c) max. ambient temp. ( c) ? ja ( c/w) ------------------------------------------------------------------------------------------------------------------------------- -------- 100 c70 c ? 20.5 c/w ------------------------------------ 1.463 w = = = table 2-5 ? package thermal resistivities package type device pin count jc ja units still air 200 ft./min. 500 ft./min. quad flat no lead (qfn) all devices 48 tbd tbd tbd tbd c/w 68 tbd tbd tbd tbd c/w 100 tbd tbd tbd tbd c/w very thin quad flat pack (vqfp) all devices 100 10.0 35.3 29.4 27.1 c/w table 2-6 ? temperature and voltage derati ng factors for timing delays (normalized to t j = 70c, vcc = 1.425 v) array voltage vcc (v) junction temperature (c) ?40c ?20c 0c 25c 70c 85c 100c 1.425 0.968 0.973 0.979 0.991 1.000 1.006 1.013 1.500 0.888 0.894 0.899 0.910 0.919 0.924 0.930 1.575 0.836 0.841 0.845 0.856 0.864 0.870 0.875
proasic3 nano dc and switching characteristics 2-6 revision 8 calculating power dissipation quiescent supply current power per i/o pin table 2-7 ? quiescent supply current characteristics a3pn010 a3pn015 a3pn020 a3pn060 a3pn125 a3pn250 typical (25c) 600 a 1 ma 1 ma 2 ma 2 ma 3 ma max. (commercial) 5 ma 5 ma 5 ma 10 ma 10 ma 20 ma max. (industrial) 8 ma 8 ma 8 ma 15 ma 15 ma 30 ma note: i dd includes vcc, vpump, and vcci, currents. table 2-8 ? summary of i/o input buffe r power (per pin) ? defa ult i/o softw are settings vcci (v) dynamic power, p ac9 (w/mhz) 1 single-ended 3.3 v lvttl / 3.3 v lvcmos 3.3 16.45 3.3 v lvttl / 3.3 v lvcmos ? schmitt trigger 3.3 18.93 3.3 v lvcmos wide range 2 3.3 16.45 3.3 v lvcmos wide range ? schmitt trigger 3.3 18.93 2.5 v lvcmos 2.5 4.73 2.5 v lvcmos ? schmitt trigger 2.5 6.14 1.8 v lvcmos 1.8 1.68 1.8 v lvcmos ? schmitt trigger 1.8 1.80 1.5 v lvcmos (jesd8-11) 1.5 0.99 1.5 v lvcmos (jesd8-11) ? schmitt trigger 1.5 0.96 notes: 1. p ac9 is the total dynamic power measured on vcci. 2. all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd8-b specification.
proasic3 nano flash fpgas revision 8 2-7 table 2-9 ? summary of i/o output bu ffer power (per pin) ? de fault i/o softw are settings 1 c load (pf) 2 vcci (v) dynamic power, p ac10 (w/mhz) 3 single-ended 3.3 v lvttl / 3.3 v lvcmos 10 3.3 162.01 3.3 v lvcmos wide range 4 10 3.3 162.01 2.5 v lvcmos 10 2.5 91.96 1.8 v lvcmos 10 1.8 46.95 1.5 v lvcmos (jesd8-11) 10 1.5 32.22 notes: 1. dynamic power consumption is given for standard load and software default drive strength and output slew. 2. values for a3pn020, a3pn015, and a3pn010. a3pn060, a3pn125, and a3pn250 correspond to a default loading of 35 pf. 3. p ac10 is the total dynamic power measured on vcci. 4. all lvcmos3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd8-b specification.
proasic3 nano dc and switching characteristics 2-8 revision 8 power consumption of vari ous internal resources table 2-10 ? different components contributing to dynamic power consumption in proasic3 nano devices parameter definition device specific dynamic contributions (w/mhz) a3pn250 a3pn125 a3pn060 a3pn020 a3pn015 a3pn010 p ac1 clock contribution of a global rib 11.03 11.03 9.3 9.3 9.3 9.3 p ac2 clock contribution of a global spine 1.58 0.81 0.81 0.4 0.4 0.4 p ac3 clock contribution of a versatile row 0.81 p ac4 clock contribution of a versatile used as a sequential module 0.12 p ac5 first contribution of a versatile used as a sequential module 0.07 p ac6 second contribution of a versatile used as a sequential module 0.29 p ac7 contribution of a versatile used as a combinatorial module 0.29 p ac8 average contribution of a routing net 0.70 p ac9 contribution of an i/o input pin (standard-dependent) see table 2-8 on page 2-6 . p ac10 contribution of an i/o output pin (standard-dependent) see table 2-9 on page 2-7 . p ac11 average contribution of a ram block during a read operation 25.00 n/a p ac12 average contribution of a ram block during a write operation 30.00 n/a p ac13 dynamic contribution for pll 2.60 n/a note: for a different output load, drive strength, or slew rate, actel recommends using the actel power spreadsheet calculator or smartpower tool in libero ? integrated design environment (ide) software. table 2-11 ? different components contributing to the static power consumption in proasic3 nano devices parameter definition device specific static power (mw) a3pn250 a3pn125 a3pn060 a3pn020 a3pn015 a3pn010 p dc1 array static power in active mode see table 2-7 on page 2-6 . p dc4 static pll contribution 1 2.55 n/a p dc5 bank quiescent power (vcci-dependent) see table 2-7 on page 2-6 . notes: 1. minimum contribution of the pll when running at lowest frequency. 2. for a different output load, drive strength, or slew rate, actel recommends using the actel power spreadsheet calculator or smartpower tool in libero ide.
proasic3 nano flash fpgas revision 8 2-9 power calculation methodology this section describes a simplified method to estima te power consumption of an application. for more accurate and detailed power estimations, use the smartpower tool in actel libero ide software. the power calculation methodology described below uses the following variables: ? the number of plls as well as the number a nd the frequency of each output clock generated ? the number of combinatorial and sequential cells used in the design ? the internal clock frequencies ? the number and the standard of i/o pins used in the design ? the number of ram blocks used in the design ? toggle rates of i/o pins as well as versatiles?guidelines are provided in table 2-12 on page 2-11 . ? enable rates of output buffers?guidelines are provided for typical applications in table 2-13 on page 2-11 . ? read rate and write rate to the memory?guidel ines are provided for typical applications in table 2-13 on page 2-11 . the calculation should be repeated for each clock domain defined in the design. methodology total power consumption?p total p total = p stat + p dyn p stat is the total static power consumption. p dyn is the total dynamic power consumption. total static power consumption?p stat p stat = p dc1 + n inputs * p dc2 + n outputs * p dc3 n inputs is the number of i/o input buffers used in the design. n outputs is the number of i/o output buffers used in the design. total dynamic power consumption?p dyn p dyn = p clock + p s-cell + p c-cell + p net + p inputs + p outputs + p memory + p pll global clock contribution?p clock p clock = (p ac1 + n spine *p ac2 + n row *p ac3 + n s-cell * p ac4 ) * f clk n spine is the number of global spines used in the user design?guidelines are provided in table 2-12 on page 2-11 . n row is the number of versatile rows used in the design?guidelines are provided in table 2-12 on page 2-11 . f clk is the global clock signal frequency. n s-cell is the number of versatiles used as sequential modules in the design. p ac1 , p ac2 , p ac3 , and p ac4 are device-dependent. sequential cells contribution?p s-cell p s-cell = n s-cell * (p ac5 + 1 / 2 * p ac6 ) * f clk n s-cell is the number of versatiles used as sequent ial modules in the design. when a multi-tile sequential cell is used, it should be accounted for as 1. 1 is the toggle rate of versatile ou tputs?guidelines are provided in table 2-12 on page 2-11 . f clk is the global clock signal frequency.
proasic3 nano dc and switching characteristics 2-10 revision 8 combinatorial cells contribution?p c-cell p c-cell = n c-cell * 1 / 2 * p ac7 * f clk n c-cell is the number of versatiles used as combinatorial modules in the design. 1 is the toggle rate of versatile ou tputs?guidelines are provided in table 2-12 on page 2-11 . f clk is the global clock signal frequency. routing net contribution?p net p net = (n s-cell + n c-cell ) * 1 / 2 * p ac8 * f clk n s-cell is the number of versatiles used as sequential modules in the design. n c-cell is the number of versatiles used as combinatorial modules in the design. 1 is the toggle rate of versatile ou tputs?guidelines are provided in table 2-12 on page 2-11 . f clk is the global clock signal frequency. i/o input buffer contribution?p inputs p inputs = n inputs * 2 / 2 * p ac9 * f clk n inputs is the number of i/o input buffers used in the design. 2 is the i/o buffer toggle rate?guidelines are provided in table 2-12 on page 2-11 . f clk is the global clock signal frequency. i/o output buffer contribution?p outputs p outputs = n outputs * 2 / 2 * 1 * p ac10 * f clk n outputs is the number of i/o output buffers used in the design. 2 is the i/o buffer toggle rate?guidelines are provided in table 2-12 on page 2-11 . 1 is the i/o buffer enable rate?guidelines are provided in table 2-13 on page 2-11 . f clk is the global clock signal frequency. ram contribution?p memory p memory = p ac11 * n blocks * f read-clock * 2 + p ac12 * n block * f write-clock * 3 n blocks is the number of ram blocks used in the design. f read-clock is the memory read clock frequency. 2 is the ram enable rate for read operations. f write-clock is the memory write clock frequency. 3 is the ram enable rate for write operations?guidelines are provided in table 2-13 on page 2-11 . pll contribution?p pll p pll = p dc4 + p ac13 *f clkout f clkout is the output clock frequency. 1 1. the pll dynamic contribution depends on the input clock fr equency, the number of output clock signals generated by the pll, and the frequency of each output clock. if a pll is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (p ac14 * f clkout product) to the total pll contribution.
proasic3 nano flash fpgas revision 8 2-11 guidelines toggle rate definition a toggle rate defines the frequency of a net or logic elem ent relative to a clock. it is a percentage. if the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. below are some examples: ? the average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency. ? the average toggle rate of an 8-bit counter is 25%: ? bit 0 (lsb) = 100% ? bit 1 = 50% ? bit 2 = 25% ?? ? bit 7 (msb) = 0.78125% ? average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8 enable rate definition output enable rate is the average percentage of ti me during which tristate outputs are enabled. when nontristate output buffers are used, the enable rate should be 100%. table 2-12 ? toggle rate guidelines reco mmended for power calculation component definition guideline 1 toggle rate of versatile outputs 10% 2 i/o buffer toggle rate 10% table 2-13 ? enable rate guidelines recomme nded for power calculation component definition guideline 1 i/o output buffer enable rate 100% 2 ram enable rate for read operations 12.5% 3 ram enable rate for write operations 12.5%
proasic3 nano dc and switching characteristics 2-12 revision 8 user i/o characteristics timing model figure 2-2 ? timing model operating conditions: ?2 speed, commercial temperature range (t j = 70c), worst case v cc = 1.425 v, with default loading at 10 pf dq y y dq dq dq y c om b inational c ell c om b inational c ell c om b inational c ell i/o mo d ule (re g istere d ) i/o mo d ule (non-re g istere d ) re g ister c ell re g ister c ell i/o mo d ule (re g istere d ) i/o mo d ule (non-re g istere d ) lv c mo s 2.5v output drive s tren g th = 8 ma hi g h s lew rate input lv c mo s 2.5 v lv c mo s 1.5 v lvttl 3.3 v output d rive stren g th = 8 ma hi g h slew rate y c om b inational c ell y c om b inational c ell y c om b inational c ell i/o mo d ule (non-re g istere d ) lvttl output d rive stren g th = 8 ma hi g h slew rate i/o mo d ule (non-re g istere d ) lv c mo s 1.5 v output d rive stren g th = 2 ma hi g h slew rate lvttl output d rive stren g th = 4 ma hi g h slew rate i/o mo d ule (non-re g istere d ) input lvttl c lo c k input lvttl c lo c k input lvttl c lo c k t pd = 0.5 6 ns t pd = 0.49 ns t dp = 2.25 ns t pd = 0.87 ns t dp = 2.87 ns t pd = 0.51 ns t dp = 2.21 ns t pd = 0.47 ns t dp = 3.02 ns t pd = 0.47 ns t py = 0.84 ns t c lkq = 0.55 ns t o c lkq = 0.59 ns t s ud = 0.43 ns t o s ud = 0.31 ns t dp = 2.21 ns t py = 0.84 ns t py = 1.14 ns t c lkq = 0.55 ns t s ud = 0.43 ns t py = 0.84 ns t i c lkq = 0.24 ns t i s ud = 0.2 6 ns t py = 1.04 ns
proasic3 nano flash fpgas revision 8 2-13 figure 2-3 ? input buffer timing model and delays (example) t py (r) pad y v trip g nd t py (f) v trip 50 % 50 % v ih v cc v il t dout (r) din g nd t dout (f) 50 % 50 % v cc pad y t py d c lk q i/o interfa c e din t din to array t py = max(t py (r), t py (f)) t din = max(t din (r), t din (f))
proasic3 nano dc and switching characteristics 2-14 revision 8 figure 2-4 ? output buffer model and delays (example) t dp (r) pad v ol t dp (f) v trip v trip v oh v cc d 50 % 50 % v cc 0 v dout 50 % 50 % 0 v t dout (r) t dout (f) from array pad t dp s t d loa d d c lk q i/o interfa c e dout d t dout t dp = max(t dp (r), t dp (f)) t dout = max(t dout (r), t dout (f))
proasic3 nano flash fpgas revision 8 2-15 figure 2-5 ? tristate output buffer timing model and delays (example) d c lk q d c lk q 10 % v cc i t zl v trip 50 % t hz 90 % v cc i t zh v trip 50 % 50 % t lz 50 % eout pad d e 50 % t eout (r) 50 % t eout (f) pad dout eout d i/o interfa c e e t eout t zl s v trip 50 % t zh s v trip 50 % eout pad d e 50 % 50 % t eout (r) t eout (f) 50 % v cc v cc v cc v cc i v cc v cc v cc v oh v ol v ol t zl , t zh , t hz , t lz , t zl s , t zh s t eout = max(t eout (r), t eout (f))
proasic3 nano dc and switching characteristics 2-16 revision 8 overview of i/o performance summary of i/o dc input and output levels ? default i/o software settings table 2-14 ? summary of maximum and minimu m dc input and output levels applicable to commercial and industrial conditions?softwar e default settings i/o standard drive strength equivalent software default drive strength option 2 slew rate vil vih vol voh i ol 1 i oh 1 min. v max v min. v max. vmax. v min. vmama 3.3 v lvttl/ 3.3 v lvcmos 8 ma 8 ma high ?0.3 0.8 2 3.6 0.4 2.4 8 8 3.3 v lvcmos wide range 100 a 8 ma high ?0.3 0.8 2 3.6 0.2 vcci ? 0.2 100 a 100 a 2.5 v lvcmos 8 ma 8 ma high ?0.3 0.7 1.7 3.6 0.7 1.7 8 8 1.8 v lvcmos 4 ma 4 ma high ?0.3 0.35 * vcci 0.65 * vcci 3.6 0.45 vcci ? 0.45 4 4 1.5 v lvcmos 2 ma 2 ma high ?0.3 0.35 * vcci 0.65 * vcci 3.6 0.25 * vcci 0.75 * vcci 2 2 notes: 1. currents are measured at 85c junction temperature. 2. note that 3.3 v lvcmos wide range is applicable to 100 a dr ive strength only. the configuration will not operate at the equivalent software default drive strength. these values are for normal ranges only. 3. all lvcmos 3.3 v software macros suppo rt lvcmos 3.3 v wide range, as specified in the jesd8-b specification. table 2-15 ? summary of maximum and minimum dc input levels applicable to commercial and industrial conditions dc i/o standards commercial 1 industrial 2 i il 3 i ih 4 i il 3 i ih 4 a a a a 3.3 v lvttl / 3.3 v lvcmos 10 10 15 15 3.3 v lvcmos wide range 10 10 15 15 2.5 v lvcmos 10 10 15 15 1.8 v lvcmos 10 10 15 15 1.5 v lvcmos 10 10 15 15 notes: 1. commercial range (?20c < t a < 70c) 2. industrial range (?40c < t a < 85c) 3. i il is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 4. i ih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges.
proasic3 nano flash fpgas revision 8 2-17 summary of i/o timing characteristics ? default i/o software settings table 2-16 ? summary of ac measuring points standard measuring trip point (vtrip) 3.3 v lvttl / 3.3 v lvcmos 1.4 v 3.3 v lvcmos wide range 1.4 v 2.5 v lvcmos 1.2 v 1.8 v lvcmos 0.90 v 1.5 v lvcmos 0.75 v table 2-17 ? i/o ac parameter definitions parameter parameter definition t dp data to pad delay through the output buffer t py pad to data delay through the input buffer t dout data to output buffer delay through the i/o interface t eout enable to output buffer tristate co ntrol delay through the i/o interface t din input buffer to data delay through the i/o interface t hz enable to pad delay through the output buffer?high to z t zh enable to pad delay through the output buffer?z to high t lz enable to pad delay through the output buffer?low to z t zl enable to pad delay through the output buffer?z to low t zhs enable to pad delay through the output buffer with delayed enable?z to high t zls enable to pad delay through the output buffer with delayed enable?z to low
proasic3 nano dc and switching characteristics 2-18 revision 8 table 2-18 ? summary of i/o timing characteristics ?software default settings (at 35 pf) std speed grade, commercial-case conditions: t j = 70c, worst case vcc = 1.425 v for a3pn060, a3pn125, and a3pn250 i/o standard drive strength (ma) equivalent software default drive strength option 1 slew rate capacitive load (pf) t dout (ns) t dp (ns) t din (ns) t py (ns) t pys (ns) t eout (ns) t zl (ns) t zh (ns) t lz (ns) t hz (ns) 3.3 v lvttl / 3.3 v lvcmos 8 8 ma high 35 0.60 4.57 0.04 1.13 1 .52 0.43 4.64 3.92 2.60 3.14 3.3 v lvcmos wide range 100 a 8 ma high 35 0.60 6.78 0.04 1.5 7 2.18 0.43 6.78 5.72 3.72 4.35 2.5 v lvcmos 8 8 ma high 35 0.60 4.94 0.0 4 1.43 1.63 0.43 4.71 4.94 2.60 2.98 1.8 v lvcmos 4 4 ma high 35 0.60 6.53 0.0 4 1.35 1.90 0.43 5.53 6.53 2.62 2.89 1.5 v lvcmos 2 2 ma high 35 0.60 7.86 0.0 4 1.56 2.14 0.43 6.45 7.86 2.66 2.83 notes: 1. note that 3.3 v lvcmos wide range is applicable to 100 a dr ive strength only. the configuration will not operate at the equivalent software default drive strength. these values are for normal ranges only. 2. all lvcmos 3.3 v software macros suppo rt lvcmos 3.3 v wide range, as specified in the jesd8-b specification. 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-19 ? summary of i/o timing characteristics ?software default settings (at 10 pf) std speed grade, commercial-case conditions: t j = 70c, worst case vcc = 1.425 v for a3pn020, a3pn015, and a3pn010 i/o standard drive strength (ma) equivalent software default drive strength option 1 slew rate capacitive load (pf) t dout (ns) t dp (ns) t din (ns) t py (ns) t pys (ns) t eout (ns) t zl (ns) t zh (ns) t lz (ns) t hz (ns) 3.3 v lvttl / 3.3 v lvcmos 8 8 ma high 10 0.60 2.73 0.04 1.13 1.52 0.43 2.77 2.23 2.60 3.14 3.3 v lvcmos wide range 100a8ma high 10 0.603.940.041.572.180.433.943.163.724.35 2.5 v lvcmos 8 8 ma high 10 0.60 2.76 0. 04 1.43 1.63 0.43 2.80 2.60 2.60 2.98 1.8 v lvcmos 4 4 ma high 10 0.60 3.22 0. 04 1.35 1.90 0.43 3.24 3.22 2.62 2.89 1.5 v lvcmos 2 2 ma high 10 0.60 3.76 0. 04 1.56 2.14 0.43 3.74 3.76 2.66 2.83 notes: 1. note that 3.3 v lvcmos wide range is applicable to 100 a drive strength only. the configur ation will not operate at the equivalent software default drive strength. these values are for normal ranges only. 2. all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range, as specified in the jesd8-b specification. 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano flash fpgas revision 8 2-19 detailed i/o dc characteristics table 2-20 ? input capacitance symbol definition cond itions min. max. units c in input capacitance vin = 0, f = 1.0 mhz 8 pf c inclk input capacitance on the clock pin vin = 0, f = 1.0 mhz 8 pf table 2-21 ? i/o output buffer maximum resistances 1 standard drive strength r pull-down ( ) 2 r pull-up ( ) 3 3.3 v lvttl / 3.3 v lvcmos 2 ma 100 300 4 ma 100 300 6 ma 50 150 8 ma 50 150 3.3 v lvcmos wide range 100 a same as equivalent software default drive 2.5 v lvcmos 2 ma 100 200 4 ma 100 200 6 ma 50 100 8 ma 50 100 1.8 v lvcmos 2 ma 200 225 4 ma 100 112 1.5 v lvcmos 2 ma 200 224 notes: 1. these maximum values are provided for informational reasons only. minimum output buffer resistance values depend on v cci , drive strength selection, temperature, and process. for board design considerations and detailed output buffer resistances, use the corresponding ibis models located on the actel website at http://www.actel.com/download/ibis/default.aspx . 2. r (pull-down-max) = (volspec) / iolspec 3. r (pull-up-max) = (vccimax ? vohspec) / i ohspec table 2-22 ? i/o weak pull-up/pull-down resistances minimum and maximum weak pull-u p/pull-down resistance values vcci r (weak pull-up) 1 ( ) r (weak pull-down) 2 ( ) min. max. min. max. 3.3 v 10 k 45 k 10 k 45 k 3.3 v (wide range i/os) 10 k 45 k 10 k 45 k 2.5 v 11 k 55 k 12 k 74 k 1.8 v 18 k 70 k 17 k 110 k 1.5 v 19 k 90 k 19 k 140 k notes: 1. r (weak pull-up-max) = (vccimax ? vohspec) / i (weak pull-up-min) 2. r (weak pulldown-max) = (volspec) / i (weak pulldown-min)
proasic3 nano dc and switching characteristics 2-20 revision 8 the length of time an i/o can withstand i osh /i osl events depends on the junction temperature. the reliability data below is based on a 3.3 v, 8 ma i/o setting, which is the worst case for this type of analysis. for example, at 100c, the short current condition would have to be sustained for more than six months to cause a reliability concern. the i/o design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions. table 2-23 ? i/o short currents i osh /i osl drive strength i osl (ma)* i osh (ma)* 3.3 v lvttl / 3.3 v lvcmos 2 ma 25 27 4 ma 25 27 6 ma 51 54 8 ma 51 54 3.3 v lvcmos wide range 100 a same as equivalent software default drive 2.5 v lvcmos 2 ma 16 18 4 ma 16 18 6 ma 32 37 8 ma 32 37 1.8 v lvcmos 2 ma 9 11 4 ma 17 22 1.5 v lvcmos 2 ma 13 16 note: *t j = 100c table 2-24 ? duration of short circ uit event before failure temperature time before failure ?40c > 20 years ?20c > 20 years 0c > 20 years 25c > 20 years 70c 5 years 85c 2 years 100c 6 months
proasic3 nano flash fpgas revision 8 2-21 table 2-25 ? schmitt trigger input hysteresis hysteresis voltage value (typ.) for schmitt mode input buffers input buffer configuration hysteresis value (typ.) 3.3 v lvttl / lvcmos (schmitt trigger mode) 240 mv 2.5 v lvcmos (schmitt trigger mode) 140 mv 1.8 v lvcmos (schmitt trigger mode) 80 mv 1.5 v lvcmos (schmitt trigger mode) 60 mv table 2-26 ? i/o input rise time, fall time , and related i/o reliability input buffer input rise/fall time (min.) input rise/f all time (max.) reliability lvttl/lvcmos (schmitt trigger disabled) no requirement 10 ns * 20 years (100c) lvttl/lvcmos (schmitt trigger enabled) no requirement no requirement, but input noise voltage cannot exceed schmitt hysteresis 20 years (100c) note: the maximum input rise/fall time is related to the noise induced into the input buffer trace. if the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. the longer the rise/fall times, the more susceptible the input signal is to the board noise. actel recommends signal integrit y evaluation/characteriza tion of the system to ensure that there is no excessive noise coupling into input signals.
proasic3 nano dc and switching characteristics 2-22 revision 8 single-ended i/o characteristics 3.3 v lvttl / 3.3 v lvcmos low-voltage transistor?transistor logic (lvttl) is a general-purpose standard (eia/jesd) for 3.3 v applications. it uses an lvttl input buffer and push-pull output buffer. table 2-27 ? minimum and maximum dc input and output levels 3.3 v lvttl / 3.3 v lvcmos vil vih vol voh i ol i oh i osl i osh i il 1 i ih 2 drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 3 max., ma 3 a 4 a 4 2 ma ?0.3 0.8 2 3.6 0.4 2.4 2 2 25 27 10 10 4 ma ?0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10 6 ma ?0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 10 10 8 ma ?0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10 notes: 1. i il is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. i ih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges. 3. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. figure 2-6 ? ac loading table 2-28 ? 3.3 v lvttl/lvcmos ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) c load (pf) 03.31.410 notes: 1. measuring point = vtrip. see table 2-16 on page 2-17 for a complete table of trip points. 2. capacitive load for a3pn060, a3pn125, and a3pn250 is 35 pf. test point test point ena b le path datapath 35 pf r = 1 k r to v cc i for t lz /t zl /t zl s r to g nd for t hz /t zh /t zh s 35 pf for t zh /t zh s /t zl /t zl s 5 pf for t hz /t lz
proasic3 nano flash fpgas revision 8 2-23 timing characteristics table 2-29 ? 3.3 v lvttl / 3.3 v lvcmos low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v software default load at 35 pf for a3pn060, a3pn125, a3pn250 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 9.70 0.04 1.13 1. 52 0.43 9.88 8.82 2.31 2.50 ns ?1 0.51 8.26 0.04 0.96 1.29 0.36 8.40 7.50 1.96 2.13 ns ?2 0.45 7.25 0.03 0.84 1.13 0.32 7.37 6.59 1.72 1.87 ns 4 ma std. 0.60 9.70 0.04 1.13 1. 52 0.43 9.88 8.82 2.31 2.50 ns ?1 0.51 8.26 0.04 0.96 1.29 0.36 8.40 7.50 1.96 2.13 ns ?2 0.45 7.25 0.03 0.84 1.13 0.32 7.37 6.59 1.72 1.87 ns 6 ma std. 0.60 6.90 0.04 1.13 1. 52 0.43 7.01 6.22 2.61 3.01 ns ?1 0.51 5.87 0.04 0.96 1.29 0.36 5.97 5.29 2.22 2.56 ns ?2 0.45 5.15 0.03 0.84 1.13 0.32 5.24 4.64 1.95 2.25 ns 8 ma std. 0.60 6.90 0.04 1.13 1. 52 0.43 7.01 6.22 2.61 3.01 ns ?1 0.51 5.87 0.04 0.96 1.29 0.36 5.97 5.29 2.22 2.56 ns ?2 0.45 5.15 0.03 0.84 1.13 0.32 5.24 4.64 1.95 2.25 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-30 ? 3.3 v lvttl / 3.3 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v software default load at 35 pf for a3pn060, a3pn125, a3pn250 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 7.19 0.04 1.13 1. 52 0.43 7.32 6.40 2.30 2.62 ns ?1 0.51 6.12 0.04 0.96 1.29 0.36 6.22 5.44 1.96 2.23 ns ?2 0.45 5.37 0.03 0.84 1.13 0.32 5.46 4.78 1.72 1.96 ns 4 ma std. 0.60 7.19 0.04 1.13 1. 52 0.43 7.32 6.40 2.30 2.62 ns ?1 0.51 6.12 0.04 0.96 1.29 0.36 6.22 5.44 1.96 2.23 ns ?2 0.45 5.37 0.03 0.84 1.13 0.32 5.46 4.78 1.72 1.96 ns 6 ma std. 0.60 4.57 0.04 1.13 1. 52 0.43 4.64 3.92 2.60 3.14 ns ?1 0.51 3.89 0.04 0.96 1.29 0.36 3.95 3.33 2.22 2.67 ns ?2 0.45 3.41 0.03 0.84 1.13 0.32 3.47 2.93 1.95 2.34 ns 8 ma std. 0.60 4.57 0.04 1.13 1.52 0.43 4.64 3.92 2.60 3.14 ns ?1 0.51 3.89 0.04 0.96 1.29 0.36 3.95 3.33 2.22 2.67 ns ?2 0.45 3.41 0.03 0.84 1.13 0.32 3.47 2.93 1.95 2.34 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano dc and switching characteristics 2-24 revision 8 table 2-31 ? 3.3 v lvttl / 3.3 v lvcmos low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v software default load at 10 pf for a3pn020, a3pn015, a3pn010 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 5.48 0.04 1.13 1. 52 0.43 5.58 5.21 2.31 2.50 ns ?1 0.51 4.66 0.04 0.96 1.29 0.36 4.74 4.43 1.96 2.13 ns ?2 0.45 4.09 0.03 0.84 1.13 0.32 4.16 3.89 1.72 1.87 ns 4 ma std. 0.60 5.48 0.04 1.13 1. 52 0.43 5.58 5.21 2.31 2.50 ns ?1 0.51 4.66 0.04 0.96 1.29 0.36 4.74 4.43 1.96 2.13 ns ?2 0.45 4.09 0.03 0.84 1.13 0.32 4.16 3.89 1.72 1.87 ns 6 ma std. 0.60 4.33 0.04 1.13 1. 52 0.43 4.40 4.14 2.61 3.01 ns ?1 0.51 3.69 0.04 0.96 1.29 0.36 3.75 3.52 2.22 2.56 ns ?2 0.45 3.24 0.03 0.84 1.13 0.32 3.29 3.09 1.95 2.25 ns 8 ma std. 0.60 4.33 0.04 1.13 1. 52 0.43 4.40 4.14 2.61 3.01 ns ?1 0.51 3.69 0.04 0.96 1.29 0.36 3.75 3.52 2.22 2.56 ns ?2 0.45 3.24 0.03 0.84 1.13 0.32 3.29 3.09 1.95 2.25 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-32 ? 3.3 v lvttl / 3.3 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v software default load at 10 pf for a3pn020, a3pn015, a3pn010 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 3.56 0.04 1.13 1. 52 0.43 3.62 3.03 2.30 2.62 ns ?1 0.51 3.03 0.04 0.96 1.29 0.36 3.08 2.58 1.96 2.23 ns ?2 0.45 2.66 0.03 0.84 1.13 0.32 2.70 2.26 1.72 1.96 ns 4 ma std. 0.60 3.56 0.04 1.13 1. 52 0.43 3.62 3.03 2.30 2.62 ns ?1 0.51 3.03 0.04 0.96 1.29 0.36 3.08 2.58 1.96 2.23 ns ?2 0.45 2.66 0.03 0.84 1.13 0.32 2.70 2.26 1.72 1.96 ns 6 ma std. 0.60 2.73 0.04 1.13 1. 52 0.43 2.77 2.23 2.60 3.14 ns ?1 0.51 2.32 0.04 0.96 1.29 0.36 2.36 1.90 2.22 2.67 ns ?2 0.45 2.04 0.03 0.84 1.13 0.32 2.07 1.67 1.95 2.34 ns 8 ma std. 0.60 2.73 0.04 1.13 1.52 0.43 2.77 2.23 2.60 3.14 ns ?1 0.51 2.32 0.04 0.96 129 0.36 2.36 1.90 2.22 2.67 ns ?2 0.45 2.04 0.03 0.84 1.13 0.32 2.07 1.67 1.95 2.34 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano flash fpgas revision 8 2-25 3.3 v lvcmos wide range table 2-33 ? minimum and maximum dc input and output levels for 3.3 v lvcmos wide range 3.3 v lvcmos wide range vil vih vol voh i ol i oh i il 1 i ih 2 drive strength equivalent software default drive strength option 3 min. v max. v min. v max. v max. v min. vmamaa 4 a 4 100 a 2 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 10 10 100 a 4 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 10 10 100 a 6 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 10 10 100 a 8ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 10 10 notes: 1. i il is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. i ih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges. 3. note that 3.3 v lvcmos wide range is applicable to 100 a drive strength only. the confi guration will not operate at the equivalent software default drive strength. these values are for normal ranges only. 4. currents are measured at 85c junction temperature. 5. all lvmcos 3.3 v software macros support lvcmos 3.3 v wide range, as specified in the jesd8-b specification. 6. software default selection highlighted in gray.
proasic3 nano dc and switching characteristics 2-26 revision 8 timing characteristics table 2-34 ? 3.3 v lvcmos wide range low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.7 v software default load at 35 pf for a3pn060, a3pn125, a3pn250 drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 100 a 2 ma std. 0.60 14.73 0.04 1.57 2.18 0.43 14.73 13.16 3.26 3.38 ns ?1 0.51 12.53 0.04 1.33 1.85 0. 36 12.53 11.19 2.77 2.87 ns ?2 0.45 11.00 0.03 1.17 1.62 0.32 11.00 9.83 2.43 2.52 ns 100 a 4 ma std. 0.60 14.73 0.04 1.57 2.18 0.43 14.73 13.16 3.26 3.38 ns ?1 0.51 12.53 0.04 1.33 1.85 0. 36 12.53 11.19 2.77 2.87 ns ?2 0.45 11.00 0.03 1.17 1.62 0.32 11.00 9.83 2.43 2.52 ns 100 a 6 ma std. 0.60 10.38 0.04 1.57 2.18 0.43 10.38 9.21 3.72 4.16 ns ?1 0.51 8.83 0.04 1.33 1.85 0.36 8.83 7.83 3.17 3.54 ns ?2 0.45 7.75 0.03 1.17 1.62 0.32 7.75 6.88 2.78 3.11 ns 100 a 8 ma std. 0.60 10.38 0.04 1.57 2.18 0.43 10.38 9.21 3.72 4.16 ns ?1 0.51 8.83 0.04 1.33 1.85 0.36 8.83 7.83 3.17 3.54 ns ?2 0.45 7.75 0.03 1.17 1.62 0.32 7.75 6.88 2.78 3.11 ns notes: 1. note that 3.3 v lvcmos wide range is applicable to 100 a dr ive strength only. the configuration will not operate at the equivalent software default drive strength. these values are for normal ranges only. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano flash fpgas revision 8 2-27 table 2-35 ? 3.3 v lvcmos wide range high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.7 v software default load at 35 pf for a3pn060, a3pn125, a3pn250 drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 100 a 2 ma std. 0.60 10.83 0.04 1.57 2.18 0.43 10.83 9.48 3.25 3.56 ns ?1 0.51 9.22 0.04 1.33 1.85 0.36 9.22 8.06 2.77 3.03 ns ?2 0.45 8.09 0.03 1.17 1.62 0.32 8.09 7.08 2.43 2.66 ns 100 a 4 ma std. 0.60 10.83 0.04 1.57 2.18 0.43 10.83 9.48 3.25 3.56 ns ?1 0.51 9.22 0.04 1.33 1.85 0.36 9.22 8.06 2.77 3.03 ns ?2 0.45 8.09 0.03 1.17 1.62 0.32 8.09 7.08 2.43 2.66 ns 100 a 6 ma std. 0.60 6.78 0.04 1. 57 2.18 0.43 6.78 5.72 3.72 4.35 ns ?1 0.51 5.77 0.04 1.33 1.85 0.36 5.77 4.87 3.16 3.70 ns ?2 0.45 5.06 0.03 1.17 1.62 0.32 5.06 4.27 2.78 3.25 ns 100 a 8 ma std. 0.60 6.78 0.04 1.57 2.18 0.43 6.78 5.72 3.72 4.35 ns ?1 0.51 5.77 0.04 1.33 1.85 0.36 5.77 4.87 3.16 3.70 ns ?2 0.45 5.06 0.03 1.17 1.62 0.32 5.06 4.27 2.78 3.25 ns notes: 1. note that 3.3 v lvcmos wide range is applicable to 100 a dr ive strength only. the configuration will not operate at the equivalent software default drive strength. these values are for normal ranges only. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. 3. software default selection highlighted in gray.
proasic3 nano dc and switching characteristics 2-28 revision 8 table 2-36 ? 3.3 v lvcmos wide range low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.7 v software default load at 35 pf for a3pn020, a3pn015, a3pn010 drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 100 a 2 ma std. 0.60 8.20 0.04 1. 57 2.18 0.43 8.20 7.68 3.26 3.38 ns ?1 0.51 6.97 0.04 1.33 1.85 0.36 6.97 6.53 2.77 2.87 ns ?2 0.45 6.12 0.03 1.17 1.62 0.32 6.12 5.73 2.43 2.52 ns 100 a 4 ma std. 0.60 8.20 0.04 1. 57 2.18 0.43 8.20 7.68 3.26 3.38 ns ?1 0.51 6.97 0.04 1.33 1.85 0.36 6.97 6.53 2.77 2.87 ns ?2 0.45 6.12 0.03 1.17 1.62 0.32 6.12 5.73 2.43 2.52 ns 100 a 6 ma std. 0.60 6.42 0.04 1. 57 2.18 0.43 6.42 6.05 3.72 4.16 ns ?1 0.51 5.46 0.04 1.33 1.85 0.36 5.46 5.14 3.17 3.54 ns ?2 0.45 4.79 0.03 1.17 1.62 0.32 4.79 4.52 2.78 3.11 ns 100 a 8 ma std. 0.60 6.42 0.04 1. 57 2.18 0.43 6.42 6.05 3.72 4.16 ns ?1 0.51 5.46 0.04 1.33 1.85 0.36 5.46 5.14 3.17 3.54 ns ?2 0.45 4.79 0.03 1.17 1.62 0.32 4.79 4.52 2.78 3.11 ns notes: 1. note that 3.3 v lvcmos wide range is applicable to 100 a dr ive strength only. the configuration will not operate at the equivalent software default drive strength. these values are for normal ranges only. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano flash fpgas revision 8 2-29 table 2-37 ? 3.3 v lvcmos wide range high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.7 v software default load at 35 pf for a3pn020, a3pn015, a3pn010 drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 100 a 2 ma std. 0.60 5.23 0.04 1. 57 2.18 0.43 5.23 4.37 3.25 3.56 ns ?1 0.51 4.45 0.04 1.33 1.85 0.36 4.45 3.71 2.77 3.03 ns ?2 0.45 3.90 0.03 1.17 1.62 0.32 3.90 3.26 2.43 2.66 ns 100 a 4 ma std. 0.60 5.23 0.04 1. 57 2.18 0.43 5.23 4.37 3.25 3.56 ns ?1 0.51 4.45 0.04 1.33 1.85 0.36 4.45 3.71 2.77 3.03 ns ?2 0.45 3.90 0.03 1.17 1.62 0.32 3.90 3.26 2.43 2.66 ns 100 a 6 ma std. 0.60 3.94 0.04 1. 57 2.18 0.43 3.94 3.16 3.72 4.35 ns ?1 0.51 3.35 0.04 1.33 1.85 0.36 3.35 2.69 3.16 3.70 ns ?2 0.45 2.94 0.03 1.17 1.62 0.32 2.94 2.36 2.78 3.25 ns 100 a 8 ma std. 0.60 3.94 0.04 1.57 2.18 0.43 3.94 3.16 3.72 4.35 ns ?1 0.51 3.35 0.04 1.33 1.85 0.36 3.35 2.69 3.16 3.70 ns ?2 0.45 2.94 0.03 1.17 1.62 0.32 2.94 2.36 2.78 3.25 ns notes: 1. note that 3.3 v lvcmos wide range is applicable to 100 a dr ive strength only. the configuration will not operate at the equivalent software default drive strength. these values are for normal ranges only. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. 3. software default selection highlighted in gray.
proasic3 nano dc and switching characteristics 2-30 revision 8 2.5 v lvcmos low-voltage cmos for 2.5 v is an extension of the lvcmos standard (jesd8-5) used for general- purpose 2.5 v applications. table 2-38 ? minimum and maximum dc input and output levels 2.5 v lvcmos vil vih vol v oh i ol i oh i osl i osh i il 1 i ih 2 drive strength min., v max., v min., v max., v max., v min., v ma ma max., ma 3 max., ma 3 a 4 a 4 2 ma ?0.3 0.7 1.7 3.6 0.7 1.7 2 2 16 18 10 10 4 ma ?0.3 0.7 1.7 3.6 0. 7 1.7 4 4 16 18 10 10 6 ma ?0.3 0.7 1.7 3.6 0.7 1.7 6 6 32 37 10 10 8 ma ?0.3 0.7 1.7 3.6 0.7 1.7 8 8 32 37 10 10 notes: 1. i il is the input leakage current per i/o pin over re commended operation conditions where ?0.3 v < vin < vil. 2. i ih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges. 3. currents are measured at high temperature (1 00c junction temperature) and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. figure 2-7 ? ac loading table 2-39 ? 2.5 v lvcmos ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) c load (pf) 02.51.210 notes: 1. measuring point = vtrip. see table 2-16 on page 2-17 for a complete table of trip points. 2. capacitive load for a3pn060, a3pn125, and a3pn250 is 35 pf. test point test point ena b le path datapath 35 pf r = 1 k r to v cc i for t lz /t zl /t zl s r to g nd for t hz /t zh /t zh s 35 pf for t zh /t zh s /t zl /t zl s 5 pf for t hz /t lz
proasic3 nano flash fpgas revision 8 2-31 timing characteristics table 2-40 ? 2.5 v lvcmos low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v software default load at 35 pf for a3pn060, a3pn125, a3pn250 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 11.29 0.04 1.43 1.6 3 0.43 10.64 11.29 2.27 2.29 ns ?1 0.51 9.61 0.04 1.22 1.39 0.36 9.05 9.61 1.93 1.95 ns ?2 0.45 8.43 0.03 1.07 1.22 0.32 7.94 8.43 1.70 1.71 ns 4 ma std. 0.60 11.29 0.04 1.43 1.6 3 0.43 10.64 11.29 2.27 2.29 ns ?1 0.51 9.61 0.04 1.22 1.39 0.36 9.05 9.61 1.93 1.95 ns ?2 0.45 8.43 0.03 1.07 1.22 0.32 7.94 8.43 1.70 1.71 ns 6 ma std. 0.60 7.73 0.04 1.43 1. 63 0.43 7.70 7.73 2.60 2.89 ns ?1 0.51 6.57 0.04 1.22 1.39 0.36 6.55 6.57 2.21 2.46 ns ?2 0.45 5.77 0.03 1.07 1.22 0.32 5.75 5.77 1.94 2.16 ns 8 ma std. 0.60 7.73 0.04 1.43 1. 63 0.43 7.70 7.73 2.60 2.89 ns ?1 0.51 6.57 0.04 1.22 1.39 0.36 6.55 6.57 2.21 2.46 ns ?2 0.45 5.77 0.03 1.07 1.22 0.32 5.75 5.77 1.94 2.16 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-41 ? 2.5 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v software default load at 35 pf for a3pn060, a3pn125, a3pn250 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 8.38 0.04 1.43 1. 63 0.43 7.36 8.38 2.27 2.37 ns ?1 0.51 7.13 0.04 1.22 1.39 0.36 6.26 7.13 1.93 2.02 ns ?2 0.45 6.26 0.03 1.07 1.22 0.32 5.50 6.26 1.69 1.77 ns 4 ma std. 0.60 8.38 0.04 1.43 1. 63 0.43 7.36 8.38 2.27 2.37 ns ?1 0.51 7.13 0.04 1.22 1.39 0.36 6.26 7.13 1.93 2.02 ns ?2 0.45 6.26 0.03 1.07 1.22 0.32 5.50 6.26 1.69 1.77 ns 6 ma std. 0.60 4.94 0.04 1.43 1. 63 0.43 4.71 4.94 2.60 2.98 ns ?1 0.51 4.20 0.04 1.22 1.39 0.36 4.01 4.20 2.21 2.54 ns ?2 0.45 3.69 0.03 1.07 1.22 0.32 3.52 3.69 1.94 2.23 ns 8 ma std. 0.60 4.94 0.04 1.43 1.63 0.43 4.71 4.94 2.60 2.98 ns ?1 0.51 4.20 0.04 1.22 1.39 0.36 4.01 4.20 2.21 2.54 ns ?2 0.45 3.69 0.03 1.07 1.22 0.32 3.52 3.69 1.94 2.23 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano dc and switching characteristics 2-32 revision 8 table 2-42 ? 2.5 v lvcmos low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v software default load at 10 pf for a3pn020, a3pn015, a3pn010 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 6.40 0.04 1.43 1. 63 0.43 6.16 6.40 2.27 2.29 ns ?1 0.51 5.45 0.04 1.22 1.39 0.36 5.24 5.45 1.93 1.95 ns ?2 0.45 4.78 0.03 1.07 1.22 0.32 4.60 4.78 1.70 1.71 ns 4 ma std. 0.60 6.40 0.04 1.43 1. 63 0.43 6.16 6.40 2.27 2.29 ns ?1 0.51 5.45 0.04 1.22 1.39 0.36 5.24 5.45 1.93 1.95 ns ?2 0.45 4.78 0.03 1.07 1.22 0.32 4.60 4.78 1.70 1.71 ns 6 ma std. 0.60 5.00 0.04 1.43 1. 63 0.43 4.90 5.00 2.60 2.89 ns ?1 0.51 4.26 0.04 1.22 1.39 0.36 4.17 4.26 2.21 2.46 ns ?2 0.45 3.74 0.03 1.07 1.22 0.32 3.66 3.74 1.94 2.16 ns 8 ma std. 0.60 5.00 0.04 1.43 1. 63 0.43 4.90 5.00 2.60 2.89 ns ?1 0.51 4.26 0.04 1.22 1.39 0.36 4.17 4.26 2.21 2.46 ns ?2 0.45 3.74 0.03 1.07 1.22 0.32 3.66 3.74 1.94 2.16 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-43 ? 2.5 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v software default load at 10 pf for a3pn020, a3pn015, a3pn010 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 3.70 0.04 1.43 1. 63 0.43 3.66 3.70 2.27 2.37 ns ?1 0.51 3.15 0.04 1.22 1.39 0.36 3.12 3.15 1.93 2.02 ns ?2 0.45 2.77 0.03 1.07 1.22 0.32 2.74 2.77 1.69 1.77 ns 4 ma std. 0.60 3.70 0.04 1.43 1. 63 0.43 3.66 3.70 2.27 2.37 ns ?1 0.51 3.15 0.04 1.22 1.39 0.36 3.12 3.15 1.93 2.02 ns ?2 0.45 2.77 0.03 1.07 1.22 0.32 2.74 2.77 1.69 1.77 ns 6 ma std. 0.60 2.76 0.04 1.43 1. 63 0.43 2.80 2.60 2.60 2.98 ns ?1 0.51 2.35 0.04 1.22 1.39 0.36 2.38 2.21 2.21 2.54 ns ?2 0.45 2.06 0.03 1.07 1.22 0.32 2.09 1.94 1.94 2.23 ns 8 ma std. 0.60 2.76 0.04 1.43 1.63 0.43 2.80 2.60 2.60 2.98 ns ?1 0.51 2.35 0.04 1.22 1.39 0.36 2.38 2.21 2.21 2.54 ns ?2 0.45 2.06 0.03 1.07 1.22 0.32 2.09 1.94 1.94 2.23 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano flash fpgas revision 8 2-33 1.8 v lvcmos low-voltage cmos for 1.8 v is an extension of the lvcmos standa rd (jesd8-5) used for general- purpose 1.8 v applications. it uses a 1.8 v input buffer and a push-pull output buffer. table 2-44 ? minimum and maximum dc input and output levels 1.8 v lvcmos vil vih vol voh i ol i oh i osl i osh i il 1 i ih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.35 * vcci 0.65 * vcci 3.6 0.45 vcci ? 0.45 2 2 9 11 10 10 4 ma ?0.3 0.35 * vcci 0.65 * vcci 3.6 0.45 vcci ? 0.45 4 4 17 22 10 10 notes: 1. i il is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. i ih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges. 3. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. figure 2-8 ? ac loading table 2-45 ? 1.8 v lvcmos ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) c load (pf) 01.80.910 notes: 1. measuring point = vtrip. see table 2-16 on page 2-17 for a complete table of trip points. 2. capacitive load for a3pn060, a3pn125, and a3pn250 is 35 pf. test point test point ena b le path datapath 35 pf r = 1 k r to v cc i for t lz /t zl /t zl s r to g nd for t hz /t zh /t zh s 35 pf for t zh /t zh s /t zl /t zl s 5 pf for t hz /t lz
proasic3 nano dc and switching characteristics 2-34 revision 8 timing characteristics table 2-46 ? 1.8 v lvcmos low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.7 v software default load at 35 pf for a3pn060, a3pn125, a3pn250 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 15.36 0.04 1.35 1.9 0 0.43 13.46 15.36 2.23 1.78 ns ?1 0.51 13.07 0.04 1.15 1.61 0.36 11.45 13.07 1.90 1.51 ns ?2 0.45 11.47 0.03 1.01 1.42 0 .32 10.05 11.47 1.67 1.33 ns 4 ma std. 0.60 10.32 0.04 1.35 1.90 0.43 9.92 10.32 2.63 2.78 ns ?1 0.51 8.78 0.04 1.15 1.61 0.36 8.44 8.78 2.23 2.37 ns ?2 0.45 7.71 0.03 1.01 1.42 0.32 7.41 7.71 1.96 2.08 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-47 ? 1.8 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.7 v software default load at 35 pf for a3pn060, a3pn125, a3pn250 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 11.42 0.04 1.35 1.90 0.43 8.65 11.42 2.23 1.84 ns ?1 0.51 9.71 0.04 1.15 1.61 0.36 7.36 9.71 1.89 1.57 ns ?2 0.45 8.53 0.03 1.01 1.42 0.32 6.46 8.53 1.66 1.37 ns 4 ma std. 0.60 6.53 0.04 1.35 1.90 0.43 5.53 6.53 2.62 2.89 ns ?1 0.51 5.56 0.04 1.15 1.61 0.36 4.70 5.56 2.23 2.45 ns ?2 0.45 4.88 0.03 1.01 1.42 0.32 4.13 4.88 1.96 2.15 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano flash fpgas revision 8 2-35 table 2-48 ? 1.8 v lvcmos low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.7 v software default load at 10 pf for a3pn020, a3pn015, a3pn010 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 8.52 0.04 1.35 1. 90 0.43 7.99 8.52 2.23 1.78 ns ?1 0.51 7.25 0.04 1.15 1.61 0.36 6.80 7.25 1.90 1.51 ns ?2 0.45 6.36 0.03 1.01 1.42 0.32 5.97 6.36 1.67 1.33 ns 4 ma std. 0.60 6.59 0.04 1.35 1. 90 0.43 6.44 6.59 2.63 2.78 ns ?1 0.51 5.60 0.04 1.15 1.61 0.36 5.48 5.60 2.23 2.37 ns ?2 0.45 4.92 0.03 1.01 1.42 0.32 4.81 4.92 1.96 2.08 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-49 ? 1.8 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.7 v software default load at 10 pf for a3pn020, a3pn015, a3pn010 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 4.79 0.04 1.35 1. 90 0.43 4.27 4.79 2.23 1.84 ns ?1 0.51 4.08 0.04 1.15 1.61 0.36 3.63 4.08 1.89 1.57 ns ?2 0.45 3.58 0.03 1.01 1.42 0.32 3.19 3.58 1.66 1.37 ns 4 ma std. 0.60 3.22 0.04 1.35 1.90 0.43 3.24 3.22 2.62 2.89 ns ?1 0.51 2.74 0.04 1.15 1.61 0.36 2.75 2.74 2.23 2.45 ns ?2 0.45 2.40 0.03 1.01 1.42 0.32 2.42 2.40 1.95 2.15 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano dc and switching characteristics 2-36 revision 8 1.5 v lvcmos (jesd8-11) low-voltage cmos for 1.5 v is an extension of the lvcmos standard (jesd8-5) used for general- purpose 1.5 v applications. it uses a 1.5 v input buffer and a push-pull output buffer. table 2-50 ? minimum and maximum dc input and output levels 1.5 v lvcmos vil vih vol voh i ol i oh i osl i osh i il 1 i ih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.35 * vcci 0.65 * vcci 3.6 0.25 * vcci 0.75 * vcci 2 2 13 16 10 10 notes: 1. i il is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. i ih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges. 3. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. figure 2-9 ? ac loading table 2-51 ? 1.5 v lvcmos ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) c load (pf) 0 1.5 0.75 10 notes: 1. measuring point = vtrip. see table 2-16 on page 2-17 for a complete table of trip points. 2. capacitive load for a3pn060, a3pn125, and a3pn250 is 35 pf. test point test point ena b le path datapath 35 pf r = 1 k r to v cc i for t lz /t zl /t zl s r to g nd for t hz /t zh /t zh s 35 pf for t zh /t zh s /t zl /t zl s 5 pf for t hz /t lz
proasic3 nano flash fpgas revision 8 2-37 timing characteristics table 2-52 ? 1.5 v lvcmos low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.4 v software default load at 35 pf for a3pn060, a3pn125, a3pn250 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 12.58 0.04 1.56 2.1 4 0.43 12.18 12.58 2.67 2.71 ns ?1 0.51 10.70 0.04 1.32 1.82 0 .36 10.36 10.70 2.27 2.31 ns ?2 0.45 9.39 0.03 1.16 1.59 0.32 9.09 9.39 1.99 2.03 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-53 ? 1.5 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.4 v software default load at 35 pf for a3pn060, a3pn125, a3pn250 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 7.86 0.04 1.56 2.14 0.43 6.45 7.86 2.66 2.83 ns ?1 0.51 6.68 0.04 1.32 1.82 0.36 5.49 6.68 2.26 2.41 ns ?2 0.45 5.87 0.03 1.16 1.59 0.32 4.82 5.87 1.99 2.12 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-54 ? 1.5 v lvcmos low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.4 v software default load at 10 pf for a3pn020, a3pn015, a3pn010 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 8.01 0.04 1.56 2. 14 0.43 8.03 8.01 2.67 2.71 ns ?1 0.51 6.81 0.04 1.32 1.82 0.36 6.83 6.81 2.27 2.31 ns ?2 0.45 5.98 0.03 1.16 1.58 0.32 6.00 5.98 2.10 2.03 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-55 ? 1.5 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.4 v software default load at 10 pf for a3pn020, a3pn015, a3pn010 drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz units 2 ma std. 0.60 3.76 0.04 1.52 2.14 0.43 3.74 3.76 2.66 2.83 ns ?1 0.51 3.20 0.04 1.32 1.82 0.36 3.18 3.20 2.26 2.41 ns ?2 0.45 2.81 0.03 1.16 1.59 0.32 2.79 2.81 1.99 2.12 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano dc and switching characteristics 2-38 revision 8 i/o register specifications fully registered i/o buffers with synchronous enable and asynchronous preset figure 2-10 ? timing model of registered i/o buffers with synchronous enable and asynchronous preset inbuf inbuf inbuf tribuf c lkbuf inbuf inbuf c lkbuf data input i/o re g ister with: a c tive hi g h ena b le a c tive hi g h preset positive-e dg e tri gg ere d data output re g ister an d ena b le output re g ister with: a c tive hi g h ena b le a c tive hi g h preset postive-e dg e tri gg ere d pa d out c lk ena b le preset data_out data eout dout ena b le c lk dq dfn1e1p1 pre dq dfn1e1p1 pre dq dfn1e1p1 pre d_ena b le a b c d e e e e f g h i j l k y c ore array
proasic3 nano flash fpgas revision 8 2-39 table 2-56 ? parameter definition and measuring nodes parameter name parameter definition measuring nodes (from, to)* t oclkq clock-to-q of the output data register h, dout t osud data setup time for the output data register f, h t ohd data hold time for the output data register f, h t osue enable setup time for the output data register g, h t ohe enable hold time for the output data register g, h t opre2q asynchronous preset-to-q of the output data register l, dout t orempre asynchronous preset removal time for the output data register l, h t orecpre asynchronous preset recovery time for the output data register l, h t oeclkq clock-to-q of the output enable register h, eout t oesud data setup time for the output enable register j, h t oehd data hold time for the output enable register j, h t oesue enable setup time for the output enable register k, h t oehe enable hold time for the output enable register k, h t oepre2q asynchronous preset-to-q of the output enable register i, eout t oerempre asynchronous preset removal time for the output enable register i, h t oerecpre asynchronous preset recovery time for the output enable register i, h t iclkq clock-to-q of the input data register a, e t isud data setup time for the input data register c, a t ihd data hold time for the input data register c, a t isue enable setup time for the input data register b, a t ihe enable hold time for the input data register b, a t ipre2q asynchronous preset-to-q of th e input data register d, e t irempre asynchronous preset removal time for the input data register d, a t irecpre asynchronous preset recovery time for the input data register d, a * see figure 2-10 on page 2-38 for more information.
proasic3 nano dc and switching characteristics 2-40 revision 8 fully registered i/o buffers with synchronous enable and asynchronous clear figure 2-11 ? timing model of the registered i/o buffers with synchronous enable and asynchronous clear ena b le c lk pa d out c lk ena b le c lr data_out data y aa eout dout c ore array dq dfn1e1 c 1 e c lr dq dfn1e1 c 1 e c lr dq dfn1e1 c 1 e c lr d_e na b le bb cc dd ee ff gg ll hh jj kk c lkbuf inbuf inbuf tribuf inbuf inbuf c lkbuf inbuf data input i/o re g ister with a c tive hi g h ena b le a c tive hi g h c lear positive-e dg e tri gg ere d data output re g ister an d ena b le output re g ister with a c tive hi g h ena b le a c tive hi g h c lear positive-e dg e tri gg ere d
proasic3 nano flash fpgas revision 8 2-41 table 2-57 ? parameter definition and measuring nodes parameter name parameter definition measuring nodes (from, to)* t oclkq clock-to-q of the output data register hh, dout t osud data setup time for the output data register ff, hh t ohd data hold time for the output data register ff, hh t osue enable setup time for the output data register gg, hh t ohe enable hold time for the output data register gg, hh t oclr2q asynchronous clear-to-q of the output data register ll, dout t oremclr asynchronous clear removal time for the output data register ll, hh t orecclr asynchronous clear recovery time for the output data register ll, hh t oeclkq clock-to-q of the output enable register hh, eout t oesud data setup time for the ou tput enable register jj, hh t oehd data hold time for the output enable register jj, hh t oesue enable setup time for the output enable register kk, hh t oehe enable hold time for the output enable register kk, hh t oeclr2q asynchronous clear-to-q of the output enable register ii, eout t oeremclr asynchronous clear removal time fo r the output enable register ii, hh t oerecclr asynchronous clear recovery time for the output enable register ii, hh t iclkq clock-to-q of the input data register aa, ee t isud data setup time for the input data register cc, aa t ihd data hold time for the input data register cc, aa t isue enable setup time for the input data register bb, aa t ihe enable hold time for the input data register bb, aa t iclr2q asynchronous clear-to-q of the input data register dd, ee t iremclr asynchronous clear removal time for the input data register dd, aa t irecclr asynchronous clear recovery time for the input data register dd, aa * see figure 2-11 on page 2-40 for more information.
proasic3 nano dc and switching characteristics 2-42 revision 8 input register timing characteristics figure 2-12 ? input register timing diagram 50 % preset c lear out_1 c lk data ena b le t i s ue 50 % 50 % t i s ud t ihd 50 % 50 % t i c lkq 1 0 t ihe t ire c pre t irempre t ire cc lr t irem c lr t iw c lr t iwpre t ipre2q t i c lr2q t i c kmpwh t i c kmpwl 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % table 2-58 ? input data register propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t iclkq clock-to-q of the input data register 0.24 0.27 0.32 ns t isud data setup time for the input data register 0.26 0.30 0.35 ns t ihd data hold time for the input data register 0.00 0.00 0.00 ns t iclr2q asynchronous clear-to-q of the in put data register 0.45 0.52 0.61 ns t ipre2q asynchronous preset-to-q of the i nput data register 0.45 0.52 0.61 ns t iremclr asynchronous clear removal time for the input data regi ster 0.00 0.00 0.00 ns t irecclr asynchronous clear recovery time for the input data regi ster 0.22 0.25 0.30 ns t irempre asynchronous preset removal time for the input data register 0.00 0.00 0.00 ns t irecpre asynchronous preset recovery time fo r the input data r egister 0.22 0.25 0.30 ns t iwclr asynchronous clear minimum pulse width fo r the input data register 0.22 0.25 0.30 ns t iwpre asynchronous preset minimum pulse width for the input data register 0.22 0.25 0.30 ns t ickmpwh clock minimum pulse width high for the input data register 0.36 0.41 0.48 ns t ickmpwl clock minimum pulse width low for t he input data register 0.32 0.37 0.43 ns note: for specific junction te mperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano flash fpgas revision 8 2-43 output register timing characteristics figure 2-13 ? output register timing diagram preset c lear dout c lk data_out ena b le t o s ue 50 % 50 % t o s ud t ohd 50 % 50 % t o c lkq 1 0 t ohe t ore c pre t orempre t ore cc lr t orem c lr t ow c lr t owpre t opre2q t o c lr2q t o c kmpwh t o c kmpwl 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % table 2-59 ? output data register propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t oclkq clock-to-q of the output data register 0.59 0.67 0.79 ns t osud data setup time for the output data register 0.31 0.36 0.42 ns t ohd data hold time for the output data register 0.00 0.00 0.00 ns t oclr2q asynchronous clear-to-q of the out put data register 0.80 0.91 1.07 ns t opre2q asynchronous preset-to-q of the ou tput data register 0.80 0.91 1.07 ns t oremclr asynchronous clear removal time for the output data register 0.00 0.00 0.00 ns t orecclr asynchronous clear recovery time for t he output data register 0.22 0.25 0.30 ns t orempre asynchronous preset removal time for the output data register 0.00 0.00 0.00 ns t orecpre asynchronous preset recovery time for the output data register 0.22 0.25 0.30 ns t owclr asynchronous clear minimum pulse width for the output data register 0.22 0.25 0.30 ns t owpre asynchronous preset minimum pulse width for the output data register 0.22 0.25 0.30 ns t ockmpwh clock minimum pulse width high for the output data register 0.36 0.41 0.48 ns t ockmpwl clock minimum pulse width low for the output data register 0.32 0.37 0.43 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano dc and switching characteristics 2-44 revision 8 output enable register timing characteristics figure 2-14 ? output enable register timing diagram 50 % preset c lear eout c lk d_ena b le ena b le t oe s ue 50 % 50 % t oe s ud t oehd 50 % 50 % t oe c lkq 1 0 t oehe t oere c pre t oerempre t oere cc lr t oerem c lr t oew c lr t oewpre t oepre2q t oe c lr2q t oe c kmpwh t oe c kmpwl 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % table 2-60 ? output enable register propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t oeclkq clock-to-q of the output en able register 0.44 0.51 0.59 ns t oesud data setup time for the output enable register 0.31 0.36 0.42 ns t oehd data hold time for the output enable register 0.00 0.00 0.00 ns t oeclr2q asynchronous clear-to-q of the out put enable register 0.67 0.76 0.89 ns t oepre2q asynchronous preset-to-q of the ou tput enable register 0.67 0.76 0.89 ns t oeremclr asynchronous clear removal time for the output enable register 0.00 0.00 0.00 ns t oerecclr asynchronous clear recovery time for t he output enable register 0.22 0.25 0.30 ns t oerempre asynchronous preset removal time for th e output enable register 0.00 0.00 0.00 ns t oerecpre asynchronous preset recovery time for t he output enable register 0.22 0.25 0.30 ns t oewclr asynchronous clear minimum pulse width for the output enable register 0.22 0.25 0.30 ns t oewpre asynchronous preset minimum pulse width for the output enable register 0.22 0.25 0.30 ns t oeckmpwh clock minimum pulse width high for the output enable register 0.36 0.41 0.48 ns t oeckmpwl clock minimum pulse width low for the output enable register 0.32 0.37 0.43 ns note: for specific junction te mperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano flash fpgas revision 8 2-45 ddr module specifications input ddr module figure 2-15 ? input ddr timing model table 2-61 ? parameter definitions parameter name parameter definition measuring nodes (from, to) t ddriclkq1 clock-to-out out_qr b, d t ddriclkq2 clock-to-out out_qf b, e t ddrisud data setup time of ddr input a, b t ddrihd data hold time of ddr input a, b t ddriclr2q1 clear-to-out out_qr c, d t ddriclr2q2 clear-to-out out_qf c, e t ddriremclr clear removal c, b t ddrirecclr clear recovery c, b input ddr data c lk c lkbuf inbuf out_qf (to c ore) ff2 ff1 inbuf c lr ddr_in e a b c d out_qr (to c ore)
proasic3 nano dc and switching characteristics 2-46 revision 8 timing characteristics figure 2-16 ? input ddr timing diagram t ddri c lr2q2 t ddrirem c lr t ddrire cc lr t ddri c lr2q1 12 3 4 5 6 78 9 c lk data c lr out_qr out_qf t ddri c lkq1 2 4 6 3 5 7 t ddrihd t ddri s ud t ddri c lkq2 table 2-62 ? input ddr propagation delays commercial-case conditions: t j = 70c, worst case vcc = 1.425 v parameter description ?2 ?1 std. units t ddriclkq1 clock-to-out out_qr for input ddr 0.27 0.31 0.37 ns t ddriclkq2 clock-to-out out_qf for input ddr 0.39 0.44 0.52 ns t ddrisud data setup for input ddr (fall) 0.28 0.32 0.38 ns data setup for input ddr (rise) 0.25 0.28 0.33 ns t ddrihd data hold for input ddr (fall) 0.00 0.00 0.00 ns data hold for input ddr (rise) 0.00 0.00 0.00 ns t ddriclr2q1 asynchronous clear-to-out out_ qr for input ddr 0.46 0.53 0.62 ns t ddriclr2q2 asynchronous clear-to-out out_ qf for input ddr 0.57 0.65 0.76 ns t ddriremclr asynchronous clear removal ti me for input ddr 0.00 0.00 0.00 ns t ddrirecclr asynchronous clear recovery ti me for input dd r 0.22 0.25 0.30 ns t ddriwclr asynchronous clear minimum pulse width for input ddr 0.22 0.25 0.30 ns t ddrickmpwh clock minimum pulse width hig h for input ddr 0.36 0.41 0.48 ns t ddrickmpwl clock minimum pulse width low for input ddr 0.32 0.37 0.43 ns f ddrimax maximum frequency for input ddr 350.00 350.00 350.00 mhz note: for specific junction temperature and voltage-supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano flash fpgas revision 8 2-47 output ddr module figure 2-17 ? output ddr timing model table 2-63 ? parameter definitions parameter name parameter definition measuring nodes (from, to) t ddroclkq clock-to-out b, e t ddroclr2q asynchronous clear-to-out c, e t ddroremclr clear removal c, b t ddrorecclr clear recovery c, b t ddrosud1 data setup data_f a, b t ddrosud2 data setup data_r d, b t ddrohd1 data hold data_f a, b t ddrohd2 data hold data_r d, b data_f (from c ore) c lk c lkbuf out ff2 inbuf c lr ddr_out output ddr ff1 0 1 x x x x x x x x a b d e c c b outbuf data_r (from c ore)
proasic3 nano dc and switching characteristics 2-48 revision 8 timing characteristics figure 2-18 ? output ddr timing diagram 11 6 1 7 2 8 3 910 45 28 3 9 t ddrorem c lr t ddrohd1 t ddrorem c lr t ddrohd2 t ddro s ud2 t ddro c lkq t ddrore cc lr c lk data_r data_f c lr out t ddro c lr2q 710 4 table 2-64 ? output ddr propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t ddroclkq clock-to-out of ddr for output ddr 0.70 0.80 0.94 ns t ddrosud1 data_f data setup for output ddr 0.38 0.43 0.51 ns t ddrosud2 data_r data setup for output ddr 0.38 0.43 0.51 ns t ddrohd1 data_f data hold for output ddr 0.00 0.00 0.00 ns t ddrohd2 data_r data hold for output ddr 0.00 0.00 0.00 ns t ddroclr2q asynchronous clear-to-out fo r output ddr 0.80 0.91 1.07 ns t ddroremclr asynchronous clear removal time for output ddr 0.00 0.00 0.00 ns t ddrorecclr asynchronous clear recovery time for output ddr 0.22 0.25 0.30 ns t ddrowclr1 asynchronous clear minimum pulse width for output ddr 0.22 0.25 0.30 ns t ddrockmpwh clock minimum pulse width high for the output ddr 0.36 0.41 0.48 ns t ddrockmpwl clock minimum pulse width low fo r the output ddr 0.32 0.37 0.43 ns f ddomax maximum frequency for the output ddr 350.00 350.00 350.00 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano flash fpgas revision 8 2-49 versatile characteristics versatile specifications as a combinatorial module the proasic3 library offers all combinations of lut- 3 combinatorial functions. in this section, timing characteristics are presented for a sample of the library. for more details, refer to the fusion, igloo ? /e, and proasic3/e macro library guide . figure 2-19 ? sample of combinatorial cells maj3 a c by mux2 b 0 1 a s y ay b b a xor2 y nor2 b a y b a y or2 inv a y and2 b a y nand3 b a c xor3 y b a c nand2
proasic3 nano dc and switching characteristics 2-50 revision 8 figure 2-20 ? timing model and waveforms t pd a b t pd = max(t pd(rr) , t pd(rf) , t pd(ff) , t pd(fr) ) where e dg es are appli c a b le for the parti c ular c om b inatorial c ell y nand2 or any c om b inatorial lo g i c t pd t pd 50 % v cc v cc v cc 50 % g nd a, b, c 50 % 50 % 50 % (rr) (rf) g nd out out g nd 50 % (ff) (fr) t pd t pd
proasic3 nano flash fpgas revision 8 2-51 timing characteristics versatile specifications as a sequential module the proasic3 library offers a wide variety of sequentia l cells, including flip-flops and latches. each has a data input and optional enable, clear, or preset. in this section, timing characteristics are presented for a representative sample from the library. for more details, refer to the fusion, igloo/e, and proasic3/e macro library guide . table 2-65 ? combinatorial cell propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v combinatorial cell equation parameter ?2 ?1 std. units inv y = !a t pd 0.40 0.46 0.54 ns and2 y = a b t pd 0.47 0.54 0.63 ns nand2 y = !(a b) t pd 0.47 0.54 0.63 ns or2 y = a + b t pd 0.49 0.55 0.65 ns nor2 y = !(a + b) t pd 0.49 0.55 0.65 ns xor2 y = a bt pd 0.74 0.84 0.99 ns maj3 y = maj(a, b, c) t pd 0.70 0.79 0.93 ns xor3 y = a b ct pd 0.87 1.00 1.17 ns mux2 y = a !s + b s t pd 0.51 0.58 0.68 ns and3 y = a b c t pd 0.56 0.64 0.75 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. figure 2-21 ? sample of sequential cells dq dfn1 data c lk out d q dfn1 c 1 data c lk out c lr dq dfi1e1p1 data c lk out en pre d q dfn1e1 data c lk out en
proasic3 nano dc and switching characteristics 2-52 revision 8 timing characteristics figure 2-22 ? timing model and waveforms pre c lr out c lk data en t s ue 50 % 50 % t s ud t hd 50 % 50 % t c lkq 0 t he t re c pre t rempre t re cc lr t rem c lr t w c lr t wpre t pre2q t c lr2q t c kmpwh t c kmpwl 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % 50 % table 2-66 ? register delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t clkq clock-to-q of the core register 0.55 0.63 0.74 ns t sud data setup time for the core register 0.43 0.49 0.57 ns t hd data hold time for the core register 0.00 0.00 0.00 ns t sue enable setup time for the core register 0.45 0.52 0.61 ns t he enable hold time for the core register 0.00 0.00 0.00 ns t clr2q asynchronous clear-to-q of the core register 0.40 0.45 0.53 ns t pre2q asynchronous preset-to-q of t he core register 0.40 0.45 0.53 ns t remclr asynchronous clear removal time for the core register 0.00 0.00 0.00 ns t recclr asynchronous clear recovery time for the core register 0.22 0.25 0.30 ns t rempre asynchronous preset removal time for the core register 0.00 0.00 0.00 ns t recpre asynchronous preset recovery time for the core register 0.22 0.25 0.30 ns t wclr asynchronous clear minimum pulse width for the core register 0.22 0.25 0.30 ns t wpre asynchronous preset minimum pulse width for the core register 0.22 0.25 0.30 ns t ckmpwh clock minimum pulse width high for the core register 0.36 0.41 0.48 ns t ckmpwl clock minimum pulse width low for the core register 0.32 0.37 0.43 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano flash fpgas revision 8 2-53 global resource characteristics a3pn250 clock tree topology clock delays are device-specific. figure 2-23 is an example of a global tree used for clock routing. the global tree presented in figure 2-23 is driven by a ccc located on the west side of the a3pn250 device. it is used to drive all d- flip-flops in the device. figure 2-23 ? example of global tree use in an a3pn250 device for clock routing c entral g lo b al ri b versatile rows g lo b al s pine ccc
proasic3 nano dc and switching characteristics 2-54 revision 8 global tree timing characteristics global clock delays include the central rib delay, the spine delay, and the row delay. delays do not include i/o input buffer clock delays, as these are i/o standard?dependent, and the clock may be driven and conditioned internally by the ccc module. for more details on clock conditioning capabilities, refer to the "clock conditioning circuits" section on page 2-57 . ta b l e 2 - 6 7 to table 2-72 on page 2-56 present minimum and maximum global clock delays within each device. minimum and maximum delays are measured with minimum and maximum loading. timing characteristics table 2-67 ? a3pn010 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description ?2 ?1 std. units min. 1 max. 2 min. 1 max. 2 min. 1 max. 2 t rckl input low delay for global clock 0.60 0.79 0.69 0.90 0.81 1.06 ns t rckh input high delay for global clock 0.62 0.84 0.70 0.96 0.82 1.12 ns t rckmpwh minimum pulse width high for global clock ns t rckmpwl minimum pulse width low for global clock ns t rcksw maximum skew for global clock 0.22 0.26 0.30 ns f rmax maximum frequency for global clock mhz notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage-supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-68 ? a3pn015 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description ?2 ?1 std. units min. 1 max. 2 min. 1 max. 2 min. 1 max. 2 t rckl input low delay for global clock 0.66 0.91 0.75 1.04 0.89 1.22 ns t rckh input high delay for global clock 0.67 0.96 0.77 1.10 0.90 1.29 ns t rckmpwh minimum pulse width high for global clock ns t rckmpwl minimum pulse width low for global clock ns t rcksw maximum skew for global clock 0.29 0.33 0.39 ns f rmax maximum frequency for global clock mhz notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage-supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano flash fpgas revision 8 2-55 table 2-69 ? a3pn020 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description ?2 ?1 std. units min. 1 max. 2 min. 1 max. 2 min. 1 max. 2 t rckl input low delay for global clock 0.66 0.91 0.75 1.04 0.89 1.22 ns t rckh input high delay for global clock 0.67 0.96 0.77 1.10 0.90 1.29 ns t rckmpwh minimum pulse width high for global clock ns t rckmpwl minimum pulse width low for global clock ns t rcksw maximum skew for global clock 0.29 0.33 0.39 ns f rmax maximum frequency for global clock mhz notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage-supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-70 ? a3pn060 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description ?2 ?1 std. units min. 1 max. 2 min. 1 max. 2 min. 1 max. 2 t rckl input low delay for global clock 0.72 0.91 0.82 1.04 0.96 1.22 ns t rckh input high delay for global clo ck 0.71 0.94 0.81 1.07 0.96 1.26 ns t rckmpwh minimum pulse width high for global clock ns t rckmpwl minimum pulse width low for global clock ns t rcksw maximum skew for global clock 0.23 0.26 0.31 ns f rmax maximum frequency for global clock mhz notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage-supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano dc and switching characteristics 2-56 revision 8 table 2-71 ? a3pn125 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description ?2 ?1 std. units min. 1 max. 2 min. 1 max. 2 min. 1 max. 2 t rckl input low delay for global clock 0.76 0.99 0.87 1.12 1.02 1.32 ns t rckh input high delay for global clock 0.76 1.02 0.87 1.17 1.02 1.37 ns t rckmpwh minimum pulse width high for global clock ns t rckmpwl minimum pulse width low for global clock ns t rcksw maximum skew for global clock 0.26 0.30 0.35 ns f rmax maximum frequency for global clock mhz notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage-supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-72 ? a3pn250 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description ?2 ?1 std. units min. 1 max. 2 min. 1 max. 2 min. 1 max. 2 t rckl input low delay for global clock 0.79 1.02 0.90 1.16 1.06 1.36 ns t rckh input high delay for global clock 0.78 1.04 0.88 1.18 1.04 1.39 ns t rckmpwh minimum pulse width high for global clock ns t rckmpwl minimum pulse width low for global clock ns t rcksw maximum skew for global clock 0.26 0.30 0.35 ns f rmax maximum frequency for global clock mhz notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage-supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano flash fpgas revision 8 2-57 clock conditioning circuits ccc electrical specifications timing characteristics table 2-73 ? proasic3 nano ccc/pll specification parameter minimum typical maximum units clock conditioning circuitry input frequency f in_ccc 1.5 350 mhz clock conditioning circuitry output frequency f out_ccc 0.75 350 mhz delay increments in programmable delay blocks 1,2 200 ps number of programmable values in each programmable delay block 32 serial clock (sclk) for dynamic pll 3,4 125 mhz input cycle-to-cycle jitter (peak magnitude) 1.5 ns acquisition time lockcontrol = 0 300 s lockcontrol = 1 6.0 ms tracking jitter 6 lockcontrol = 0 1.6 ns lockcontrol = 1 0.8 ns output duty cycle 48.5 51.5 % delay range in block: programmable delay 1 1,2 1.25 15.65 ns delay range in block: programmable delay 2 1,2 0.025 15.65 ns delay range in block: fixed delay 1,2 2.2 ns vco output peak-to-peak period jitter f ccc_out 5 max peak-to-peak jitter data 5,7,8 sso 2 sso 4 sso 8sso 16 0.75 mhz to 50mhz 0.50% 0.50% 0.70% 1.00% 50 mhz to 250 mhz 1.00% 3.00% 5.00% 9.00% 250 mhz to 350 mhz 2.50% 4.00% 6.00% 12.00% notes: 1. this delay is a function of voltage and temperature. see table 2-6 on page 2-5 for deratings. 2. t j = 25c, v cc = 1.5 v 3. maximum value obtained for a ?2 speed-grade device in worst-case commercial conditions. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. 4. the a3pn010, a3pn015, and a3pn020 devices do not support plls. 5. vco output jitter is calculated as a percentage of the vco frequency. the jitter (in ps) can be calculated by multiplying the vco period by the % jitter. the vco jitter (in ps) applies to ccc_out regardless of the output divider settings. for example, if the jitter on vco is 300 ps, the jitter on ccc_out is also 300 ps, regardless of the output divider settings. 6. tracking jitter is defined as the variation in clock edge position of pll outputs with reference to the pll input clock edge. tracking jitter does not measure the variation in pll output period, which is covered by the period jitter parameter. 7. measurements done with lvttl 3.3 v 8 ma i/o drive strength and high slew rate. vcc/vccpll = 1.425 v, vcci = 3.3 , vq/pq/tq type of packages, 20 pf load. 8. ssos are outputs that are synchronous to a single clock domain, and have their clock-to-out times within 200 ps of each other.
proasic3 nano dc and switching characteristics 2-58 revision 8 note: peak-to-peak jitter meas urements are defined by t peak-to-peak = t period_max ? t period_min . figure 2-24 ? peak-to-peak jitter definition t period_max t period_min output signal
proasic3 nano flash fpgas revision 8 2-59 embedded sram and fifo characteristics sram figure 2-25 ? ram models addra11 douta8 douta7 douta0 doutb8 doutb7 doutb0 addra10 addra0 dina8 dina7 dina0 widtha1 widtha0 pipea wmodea blka wena c lka addrb11 addrb10 addrb0 dinb8 dinb7 dinb0 widthb1 widthb0 pipeb wmodeb blkb wenb c lkb ram4k9 raddr8 rd17 raddr7 rd1 6 raddr0 rd0 wd17 wd1 6 wd0 ww1 ww0 rw1 rw0 pipe ren r c lk ram512x18 waddr8 waddr7 waddr0 wen w c lk re s et re s et
proasic3 nano dc and switching characteristics 2-60 revision 8 timing waveforms figure 2-26 ? ram read for pass-through output figure 2-27 ? ram read for pipelined output c lk add blk_b wen_b do a 0 a 1 a 2 d 0 d 1 d 2 t c y c t c kh t c kl t a s t ah t bk s t en s t enh t doh1 t bkh d n t c kq1 c lk add blk_b wen_b do a 0 a 1 a 2 d 0 d 1 t c y c t c kh t c kl t a s t ah t bk s t en s t enh t doh2 t c kq2 t bkh d n
proasic3 nano flash fpgas revision 8 2-61 figure 2-28 ? ram write, output re tained (wmode = 0) figure 2-29 ? ram write, output as write data (wmode = 1) t c y c t c kh t c kl a 0 a 1 a 2 di 0 di 1 t a s t ah t bk s t en s t enh t d s t dh c lk blk_b wen_b add di d n do t bkh d 2 t c y c t c kh t c kl a 0 a 1 a 2 di 0 di 1 t a s t ah t bk s t en s t d s t dh c lk blk_b wen_b add di t bkh do (pass-throu g h) di 1 d n di 0 do (pipeline d ) di 0 di 1 d n di 2
proasic3 nano dc and switching characteristics 2-62 revision 8 figure 2-30 ? ram reset c lk re s et_b do d n t c y c t c kh t c kl t r s tbq d m
proasic3 nano flash fpgas revision 8 2-63 timing characteristics table 2-74 ? ram4k9 commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t as address setup time 0.25 0.28 0.33 ns t ah address hold time 0.00 0.00 0.00 ns t ens ren_b, wen_b setup time 0.14 0.16 0.19 ns t enh ren_b, wen_b hold time 0.10 0.11 0.13 ns t bks blk_b setup time 0.23 0.27 0.31 ns t bkh blk_b hold time 0.02 0.02 0.02 ns t ds input data (di) setup time 0.18 0.21 0.25 ns t dh input data (di) hold time 0.00 0.00 0.00 ns t ckq1 clock high to new data valid on do (o utput retained, wmode = 0) 1.79 2.03 2.39 ns clock high to new data valid on do (flow-through, wmode = 1) 2.36 2.68 3.15 ns t ckq2 clock high to new data valid on do (pipelined) 0.89 1.02 1.20 ns t c2cwwl address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge 0.33 0.28 0.25 ns t c2cwwh address collision clk-to-clk delay for reliable write after write on same address; applicable to rising edge 0.30 0.26 0.23 ns t c2crwh address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge 0.45 0.38 0.34 ns t c2cwrh address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge 0.49 0.42 0.37 ns t rstbq reset_b low to data out low on do (flow through) 0.92 1.05 1.23 ns reset_b low to data out low on do (pipelined) 0.92 1.05 1.23 ns t remrstb reset_b removal 0.29 0.33 0.38 ns t recrstb reset_b recovery 1.50 1.71 2.01 ns t mpwrstb reset_b minimum pulse width 0.21 0.24 0.29 ns t cyc clock cycle time 3.23 3.68 4.32 ns f max maximum frequency 310 272 231 mhz note: for specific junction temper ature and voltage-supply levels, refer to table 3-6 on page 3-4 for derating values.
proasic3 nano dc and switching characteristics 2-64 revision 8 table 2-75 ? ram512x18 commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t as address setup time 0.25 0.28 0.33 ns t ah address hold time 0.00 0.00 0.00 ns t ens ren_b, wen_b setup time 0.09 0.10 0.12 ns t enh ren_b, wen_b hold time 0.06 0.07 0.08 ns t ds input data (di) setup time 0.18 0.21 0.25 ns t dh input data (di) hold time 0.00 0.00 0.00 ns t ckq1 clock high to new data valid on do (output retained, wmode = 0) 2.16 2.46 2.89 ns t ckq2 clock high to new data valid on do (pipelined) 0.90 1.02 1.20 ns t c2crwh address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge 0.50 0.43 0.38 ns t c2cwrh address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge 0.59 0.50 0.44 ns t rstbq reset_b low to data out low on do (flow-through) 0.92 1.05 1.23 ns reset_b low to data out low on do (pipelined) 0.92 1.05 1.23 ns t remrstb reset_b removal 0.29 0.33 0.38 ns t recrstb reset_b recovery 1.50 1.71 2.01 ns t mpwrstb reset_b minimum pulse width 0.21 0.24 0.29 ns t cyc clock cycle time 3.23 3.68 4.32 ns f max maximum frequency 310 272 231 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano flash fpgas revision 8 2-65 fifo figure 2-31 ? fifo model fifo4k18 rw2 rd17 rw1 rd1 6 rw0 ww2 ww1 ww0 rd0 e s top f s top full afull empty afval11 aempty afval10 afval0 aeval11 aeval10 aeval0 ren rblk r c lk wen wblk w c lk rpipe wd17 wd1 6 wd0 re s et
proasic3 nano dc and switching characteristics 2-66 revision 8 timing waveforms figure 2-32 ? fifo reset figure 2-33 ? fifo empty flag and aempty flag assertion mat c h (a 0 ) t mpwr s tb t r s tf g t r s t c k t r s taf r c lk/ w c lk re s et_b empty aempty wa/ra (a dd ress c ounter) t r s tf g t r s taf full afull r c lk no mat c h no mat c h dist = aef_th mat c h (empty) t c kaf t r c kef empty aempty t c y c wa/ra (a dd ress c ounter)
proasic3 nano flash fpgas revision 8 2-67 figure 2-34 ? fifo full flag and afull flag assertion figure 2-35 ? fifo empty flag and aempty flag deassertion figure 2-36 ? fifo full flag and afull flag deassertion no mat c h no mat c h dist = aff_th mat c h (full) t c kaf t w c kff t c y c w c lk full afull wa/ra (a dd ress c ounter) w c lk wa/ra (a dd ress c ounter) mat c h (empty) no mat c h no mat c h no mat c h dist = aef_th + 1 no mat c h r c lk empty 1st risin g e dg e after 1st write 2n d risin g e dg e after 1st write t r c kef t c kaf aempty dist = aff_th ? 1 mat c h (full) no mat c h no mat c h no mat c h no mat c h t w c kf t c kaf 1st risin g e dg e after 1st rea d 1st risin g e dg e after 2n d rea d r c lk wa/ra (a dd ress c ounter) w c lk full afull
proasic3 nano dc and switching characteristics 2-68 revision 8 timing characteristics table 2-76 ? fifo worst commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description ?2 ?1 std. units t ens ren_b, wen_b setup time 1.38 1.57 1.84 ns t enh ren_b, wen_b hold time 0.02 0.02 0.02 ns t bks blk_b setup time 0.22 0.25 0.30 ns t bkh blk_b hold time 0.00 0.00 0.00 ns t ds input data (di) setup time 0.18 0.21 0.25 ns t dh input data (di) hold time 0.00 0.00 0.00 ns t ckq1 clock high to new data valid on do (flow-through) 2.36 2.68 3.15 ns t ckq2 clock high to new data valid on do (pipelined) 0.89 1.02 1.20 ns t rckef rclk high to empty flag valid 1.72 1.96 2.30 ns t wckff wclk high to full flag valid 1.63 1.86 2.18 ns t ckaf clock high to almost empty/full flag valid 6.19 7.05 8.29 ns t rstfg reset_b low to empty/full flag valid 1.69 1.93 2.27 ns t rstaf reset_b low to almost empt y/full flag valid 6.13 6.98 8.20 ns t rstbq reset_b low to data out low on do (flow-through) 0.92 1.05 1.23 ns reset_b low to data out low on do (pipelined) 0.92 1.05 1.23 ns t remrstb reset_b removal 0.29 0.33 0.38 ns t recrstb reset_b recovery 1.50 1.71 2.01 ns t mpwrstb reset_b minimum pulse width 0.21 0.24 0.29 ns t cyc clock cycle time 3.23 3.68 4.32 ns f max maximum frequency for fifo 310 272 231 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3 nano flash fpgas revision 8 2-69 embedded flashrom characteristics timing characteristics figure 2-37 ? timing diagram a 0 a 1 t su t hold t su t hold t su t hold t ckq2 t ckq2 t ckq2 clk address data d 0 d 0 d 1 table 2-77 ? embedded flashrom access time commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t su address setup time 0.53 0.61 0.71 ns t hold address hold time 0.00 0.00 0.00 ns t ck2q clock to out 16.23 18.48 21.73 ns f max maximum clock frequency 15.00 15.00 15.00 mhz
proasic3 nano dc and switching characteristics 2-70 revision 8 jtag 1532 characteristics jtag timing delays do not include jtag i/os. to obtai n complete jtag timing, add i/o buffer delays to the corresponding standard selected; refer to the i/o timing characteristics in the "user i/o characteristics" section on page 2-12 for more details. timing characteristics actel safety critical, life support, and high-reliability applications policy the actel products described in this advance st atus datasheet may not have completed actel?s qualification process. actel may amend or enhanc e products during the pr oduct introduction and qualification process, resulting in changes in device functionality or performance. it is the responsibility of each customer to ensure the fitness of any actel pr oduct (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. consult actel?s terms and conditions for specific liab ility exclusions relating to life-support applications. a reliability report covering all of actel?s products is available on the actel website at http://www.actel.com/documents/ort_report.pdf . actel also offers a variety of enhanced qualification and lot acceptance screening procedures. contact your local actel sales office for additional reliability information. table 2-78 ? jtag 1532 commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t disu test data input setup time 0.53 0.60 0.71 ns t dihd test data input hold time 1.07 1.21 1.42 ns t tmssu test mode select setup time 0.53 0.60 0.71 ns t tmdhd test mode select hold time 1.07 1.21 1.42 ns t tck2q clock to q (data out) 6.39 7.24 8.52 ns t rstb2q reset to q (data out) 21.31 24.15 28.41 ns f tckmax tck maximum frequency 23.00 20.00 17.00 mhz t trstrem resetb removal time 0.00 0.00 0.00 ns t trstrec resetb recovery time 0.21 0.24 0.28 ns t trstmpw resetb minimum pulse tbd tbd tbd ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
revision 8 3-1 proasic3 nano flash fpgas 3 ? package pin assignments 48-pin qfn note for package manufacturing and environmental information, visit the resource center at http://www.actel.com/products/s olutions/package/docs.aspx. notes: 1. this is the bottom view of the package. 2. the die attach paddle of the package is tied to ground (gnd). 48 1 pin 1
package pin assignments 3-2 revision 8 48-pin qfn pin number a3pn010 function 1 gec0/io37rsb1 2 io36rsb1 3 gea0/io34rsb1 4 io22rsb1 5gnd 6vccib1 7 io24rsb1 8 io33rsb1 9 io26rsb1 10 io32rsb1 11 io27rsb1 12 io29rsb1 13 io30rsb1 14 io31rsb1 15 io28rsb1 16 io25rsb1 17 io23rsb1 18 vcc 19 vccib1 20 io17rsb1 21 io14rsb1 22 tck 23 tdi 24 tms 25 vpump 26 tdo 27 trst 28 vjtag 29 io11rsb0 30 io10rsb0 31 io09rsb0 32 io08rsb0 33 vccib0 34 gnd 35 vcc 36 io07rsb0 37 io06rsb0 38 gda0/io05rsb0 39 io03rsb0 40 gdc0/io01rsb0 41 io12rsb1 42 io13rsb1 43 io15rsb1 44 io16rsb1 45 io18rsb1 46 io19rsb1 47 io20rsb1 48 io21rsb1 48-pin qfn pin number a3pn010 function
proasic3 nano flash fpgas revision 8 3-3 48-pin qfn pin number a3pn030z function 1 io82rsb1 2 gec0/io73rsb1 3 gea0/io72rsb1 4 geb0/io71rsb1 5gnd 6 vccib1 7 io68rsb1 8 io67rsb1 9 io66rsb1 10 io65rsb1 11 io64rsb1 12 io62rsb1 13 io61rsb1 14 io60rsb1 15 io57rsb1 16 io55rsb1 17 io53rsb1 18 vcc 19 vccib1 20 io46rsb1 21 io42rsb1 22 tck 23 tdi 24 tms 25 vpump 26 tdo 27 trst 28 vjtag 29 io38rsb0 30 gdb0/io34rsb0 31 gda0/io33rsb0 32 gdc0/io32rsb0 33 vccib0 34 gnd 35 vcc 36 io25rsb0 37 io24rsb0 38 io22rsb0 39 io20rsb0 40 io18rsb0 41 io16rsb0 42 io14rsb0 43 io10rsb0 44 io08rsb0 45 io06rsb0 46 io04rsb0 47 io02rsb0 48 io00rsb0 48-pin qfn pin number a3pn030z function
package pin assignments 3-4 revision 8 68-pin qfn note for package manufacturing and environmental information, visit the resource center at http://www.actel.com/products /solutions/package/docs.aspx . notes: 1. this is the bottom view of the package. 2. the die attach paddle of the package is tied to ground (gnd). pin a1 mark 1 68
proasic3 nano flash fpgas revision 8 3-5 68-pin qfn pin number a3pn015 function 1 io60rsb2 2 io54rsb2 3 io52rsb2 4 io50rsb2 5 io49rsb2 6 gec0/io48rsb2 7 gea0/io47rsb2 8vcc 9gnd 10 vccib2 11 io46rsb2 12 io45rsb2 13 io44rsb2 14 io43rsb2 15 io42rsb2 16 io41rsb2 17 io40rsb2 18 io39rsb1 19 io37rsb1 20 io35rsb1 21 io33rsb1 22 io31rsb1 23 io30rsb1 24 vcc 25 gnd 26 vccib1 27 io27rsb1 28 io25rsb1 29 io23rsb1 30 io21rsb1 31 io19rsb1 32 tck 33 tdi 34 tms 35 vpump 36 tdo 37 trst 38 vjtag 39 io17rsb0 40 io16rsb0 41 gda0/io15rsb0 42 gdc0/io14rsb0 43 io13rsb0 44 vccib0 45 gnd 46 vcc 47 io12rsb0 48 io11rsb0 49 io09rsb0 50 io05rsb0 51 io00rsb0 52 io07rsb0 53 io03rsb0 54 io18rsb1 55 io20rsb1 56 io22rsb1 57 io24rsb1 58 io28rsb1 59 nc 60 gnd 61 nc 62 io32rsb1 63 io34rsb1 64 io36rsb1 65 io61rsb2 66 io58rsb2 67 io56rsb2 68 io63rsb2 68-pin qfn pin number a3pn015 function
package pin assignments 3-6 revision 8 68-pin qfn pin number a3pn020 function 1 io60rsb2 2 io54rsb2 3 io52rsb2 4 io50rsb2 5 io49rsb2 6 gec0/io48rsb2 7 gea0/io47rsb2 8vcc 9gnd 10 vccib2 11 io46rsb2 12 io45rsb2 13 io44rsb2 14 io43rsb2 15 io42rsb2 16 io41rsb2 17 io40rsb2 18 io39rsb1 19 io37rsb1 20 io35rsb1 21 io33rsb1 22 io31rsb1 23 io30rsb1 24 vcc 25 gnd 26 vccib1 27 io27rsb1 28 io25rsb1 29 io23rsb1 30 io21rsb1 31 io19rsb1 32 tck 33 tdi 34 tms 35 vpump 36 tdo 37 trst 38 vjtag 39 io17rsb0 40 io16rsb0 41 gda0/io15rsb0 42 gdc0/io14rsb0 43 io13rsb0 44 vccib0 45 gnd 46 vcc 47 io12rsb0 48 io11rsb0 49 io09rsb0 50 io05rsb0 51 io00rsb0 52 io07rsb0 53 io03rsb0 54 io18rsb1 55 io20rsb1 56 io22rsb1 57 io24rsb1 58 io28rsb1 59 nc 60 gnd 61 nc 62 io32rsb1 63 io34rsb1 64 io36rsb1 65 io61rsb2 66 io58rsb2 67 io56rsb2 68 io63rsb2 68-pin qfn pin number a3pn020 function
proasic3 nano flash fpgas revision 8 3-7 68-pin qfn pin number a3pn030z function 1 io82rsb1 2 io80rsb1 3 io78rsb1 4 io76rsb1 5 gec0/io73rsb1 6 gea0/io72rsb1 7 geb0/io71rsb1 8vcc 9gnd 10 vccib1 11 io68rsb1 12 io67rsb1 13 io66rsb1 14 io65rsb1 15 io64rsb1 16 io63rsb1 17 io62rsb1 18 io60rsb1 19 io58rsb1 20 io56rsb1 21 io54rsb1 22 io52rsb1 23 io51rsb1 24 vcc 25 gnd 26 vccib1 27 io50rsb1 28 io48rsb1 29 io46rsb1 30 io44rsb1 31 io42rsb1 32 tck 33 tdi 34 tms 35 vpump 36 tdo 37 trst 38 vjtag 39 io40rsb0 40 io37rsb0 41 gdb0/io34rsb0 42 gda0/io33rsb0 43 gdc0/io32rsb0 44 vccib0 45 gnd 46 vcc 47 io31rsb0 48 io29rsb0 49 io28rsb0 50 io27rsb0 51 io25rsb0 52 io24rsb0 53 io22rsb0 54 io21rsb0 55 io19rsb0 56 io17rsb0 57 io15rsb0 58 io14rsb0 59 vccib0 60 gnd 61 vcc 62 io12rsb0 63 io10rsb0 64 io08rsb0 65 io06rsb0 66 io04rsb0 67 io02rsb0 68 io00rsb0 68-pin qfn pin number a3pn030z function
package pin assignments 3-8 revision 8 100-pin vqfp note for package manufacturing and environmental information, visit the resource center at http://www.actel.com/products /solutions/package/docs.aspx . note: this is the top view of the package. 1 100
proasic3 nano flash fpgas revision 8 3-9 100-pin vqfp pin number a3pn030z function 1gnd 2 io82rsb1 3 io81rsb1 4 io80rsb1 5 io79rsb1 6 io78rsb1 7 io77rsb1 8 io76rsb1 9gnd 10 io75rsb1 11 io74rsb1 12 gec0/io73rsb1 13 gea0/io72rsb1 14 geb0/io71rsb1 15 io70rsb1 16 io69rsb1 17 vcc 18 vccib1 19 io68rsb1 20 io67rsb1 21 io66rsb1 22 io65rsb1 23 io64rsb1 24 io63rsb1 25 io62rsb1 26 io61rsb1 27 io60rsb1 28 io59rsb1 29 io58rsb1 30 io57rsb1 31 io56rsb1 32 io55rsb1 33 io54rsb1 34 io53rsb1 35 io52rsb1 36 io51rsb1 37 vcc 38 gnd 39 vccib1 40 io49rsb1 41 io47rsb1 42 io46rsb1 43 io45rsb1 44 io44rsb1 45 io43rsb1 46 io42rsb1 47 tck 48 tdi 49 tms 50 nc 51 gnd 52 vpump 53 nc 54 tdo 55 trst 56 vjtag 57 io41rsb0 58 io40rsb0 59 io39rsb0 60 io38rsb0 61 io37rsb0 62 io36rsb0 63 gdb0/io34rsb0 64 gda0/io33rsb0 65 gdc0/io32rsb0 66 vccib0 67 gnd 68 vcc 69 io31rsb0 70 io30rsb0 100-pin vqfp pin number a3pn030z function 71 io29rsb0 72 io28rsb0 73 io27rsb0 74 io26rsb0 75 io25rsb0 76 io24rsb0 77 io23rsb0 78 io22rsb0 79 io21rsb0 80 io20rsb0 81 io19rsb0 82 io18rsb0 83 io17rsb0 84 io16rsb0 85 io15rsb0 86 io14rsb0 87 vccib0 88 gnd 89 vcc 90 io12rsb0 91 io10rsb0 92 io08rsb0 93 io07rsb0 94 io06rsb0 95 io05rsb0 96 io04rsb0 97 io03rsb0 98 io02rsb0 99 io01rsb0 100 io00rsb0 100-pin vqfp pin number a3pn030z function
package pin assignments 3-10 revision 8 100-pin vqfp pin number a3pn060 function 1gnd 2 gaa2/io51rsb1 3 io52rsb1 4 gab2/io53rsb1 5 io95rsb1 6 gac2/io94rsb1 7 io93rsb1 8 io92rsb1 9gnd 10 gfb1/io87rsb1 11 gfb0/io86rsb1 12 vcomplf 13 gfa0/io85rsb1 14 vccplf 15 gfa1/io84rsb1 16 gfa2/io83rsb1 17 vcc 18 vccib1 19 gec1/io77rsb1 20 geb1/io75rsb1 21 geb0/io74rsb1 22 gea1/io73rsb1 23 gea0/io72rsb1 24 vmv1 25 gndq 26 gea2/io71rsb1 27 geb2/io70rsb1 28 gec2/io69rsb1 29 io68rsb1 30 io67rsb1 31 io66rsb1 32 io65rsb1 33 io64rsb1 34 io63rsb1 35 io62rsb1 36 io61rsb1 37 vcc 38 gnd 39 vccib1 40 io60rsb1 41 io59rsb1 42 io58rsb1 43 io57rsb1 44 gdc2/io56rsb1 45 gdb2/io55rsb1 46 gda2/io54rsb1 47 tck 48 tdi 49 tms 50 vmv1 51 gnd 52 vpump 53 nc 54 tdo 55 trst 56 vjtag 57 gda1/io49rsb0 58 gdc0/io46rsb0 59 gdc1/io45rsb0 60 gcc2/io43rsb0 61 gcb2/io42rsb0 62 gca0/io40rsb0 63 gca1/io39rsb0 64 gcc0/io36rsb0 65 gcc1/io35rsb0 66 vccib0 67 gnd 68 vcc 69 io31rsb0 70 gbc2/io29rsb0 100-pin vqfp pin number a3pn060 function 71 gbb2/io27rsb0 72 io26rsb0 73 gba2/io25rsb0 74 vmv0 75 gndq 76 gba1/io24rsb0 77 gba0/io23rsb0 78 gbb1/io22rsb0 79 gbb0/io21rsb0 80 gbc1/io20rsb0 81 gbc0/io19rsb0 82 io18rsb0 83 io17rsb0 84 io15rsb0 85 io13rsb0 86 io11rsb0 87 vccib0 88 gnd 89 vcc 90 io10rsb0 91 io09rsb0 92 io08rsb0 93 gac1/io07rsb0 94 gac0/io06rsb0 95 gab1/io05rsb0 96 gab0/io04rsb0 97 gaa1/io03rsb0 98 gaa0/io02rsb0 99 io01rsb0 100 io00rsb0 100-pin vqfp pin number a3pn060 function
proasic3 nano flash fpgas revision 8 3-11 100-pin vqfp pin number a3pn060z 1gnd 2 gaa2/io51rsb1 3 io52rsb1 4 gab2/io53rsb1 5 io95rsb1 6 gac2/io94rsb1 7 io93rsb1 8 io92rsb1 9gnd 10 gfb1/io87rsb1 11 gfb0/io86rsb1 12 vcomplf 13 gfa0/io85rsb1 14 vccplf 15 gfa1/io84rsb1 16 gfa2/io83rsb1 17 vcc 18 vccib1 19 gec1/io77rsb1 20 geb1/io75rsb1 21 geb0/io74rsb1 22 gea1/io73rsb1 23 gea0/io72rsb1 24 vmv1 25 gndq 26 gea2/io71rsb1 27 geb2/io70rsb1 28 gec2/io69rsb1 29 io68rsb1 30 io67rsb1 31 io66rsb1 32 io65rsb1 33 io64rsb1 34 io63rsb1 35 io62rsb1 36 io61rsb1 37 vcc 38 gnd 39 vccib1 40 io60rsb1 41 io59rsb1 42 io58rsb1 43 io57rsb1 44 gdc2/io56rsb1 45 gdb2/io55rsb1 46 gda2/io54rsb1 47 tck 48 tdi 49 tms 50 vmv1 51 gnd 52 vpump 53 nc 54 tdo 55 trst 56 vjtag 57 gda1/io49rsb0 58 gdc0/io46rsb0 59 gdc1/io45rsb0 60 gcc2/io43rsb0 61 gcb2/io42rsb0 62 gca0/io40rsb0 63 gca1/io39rsb0 64 gcc0/io36rsb0 65 gcc1/io35rsb0 66 vccib0 67 gnd 68 vcc 69 io31rsb0 70 gbc2/io29rsb0 100-pin vqfp pin number a3pn060z 71 gbb2/io27rsb0 72 io26rsb0 73 gba2/io25rsb0 74 vmv0 75 gndq 76 gba1/io24rsb0 77 gba0/io23rsb0 78 gbb1/io22rsb0 79 gbb0/io21rsb0 80 gbc1/io20rsb0 81 gbc0/io19rsb0 82 io18rsb0 83 io17rsb0 84 io15rsb0 85 io13rsb0 86 io11rsb0 87 vccib0 88 gnd 89 vcc 90 io10rsb0 91 io09rsb0 92 io08rsb0 93 gac1/io07rsb0 94 gac0/io06rsb0 95 gab1/io05rsb0 96 gab0/io04rsb0 97 gaa1/io03rsb0 98 gaa0/io02rsb0 99 io01rsb0 100 io00rsb0 100-pin vqfp pin number a3pn060z
package pin assignments 3-12 revision 8 100-pin vqfp pin number a3pn125 function 1gnd 2 gaa2/io67rsb1 3 io68rsb1 4 gab2/io69rsb1 5 io132rsb1 6 gac2/io131rsb1 7 io130rsb1 8 io129rsb1 9gnd 10 gfb1/io124rsb1 11 gfb0/io123rsb1 12 vcomplf 13 gfa0/io122rsb1 14 vccplf 15 gfa1/io121rsb1 16 gfa2/io120rsb1 17 vcc 18 vccib1 19 gec0/io111rsb1 20 geb1/io110rsb1 21 geb0/io109rsb1 22 gea1/io108rsb1 23 gea0/io107rsb1 24 vmv1 25 gndq 26 gea2/io106rsb1 27 geb2/io105rsb1 28 gec2/io104rsb1 29 io102rsb1 30 io100rsb1 31 io99rsb1 32 io97rsb1 33 io96rsb1 34 io95rsb1 35 io94rsb1 36 io93rsb1 37 vcc 38 gnd 39 vccib1 40 io87rsb1 41 io84rsb1 42 io81rsb1 43 io75rsb1 44 gdc2/io72rsb1 45 gdb2/io71rsb1 46 gda2/io70rsb1 47 tck 48 tdi 49 tms 50 vmv1 51 gnd 52 vpump 53 nc 54 tdo 55 trst 56 vjtag 57 gda1/io65rsb0 58 gdc0/io62rsb0 59 gdc1/io61rsb0 60 gcc2/io59rsb0 61 gcb2/io58rsb0 62 gca0/io56rsb0 63 gca1/io55rsb0 64 gcc0/io52rsb0 65 gcc1/io51rsb0 66 vccib0 67 gnd 68 vcc 69 io47rsb0 70 gbc2/io45rsb0 100-pin vqfp pin number a3pn125 function 71 gbb2/io43rsb0 72 io42rsb0 73 gba2/io41rsb0 74 vmv0 75 gndq 76 gba1/io40rsb0 77 gba0/io39rsb0 78 gbb1/io38rsb0 79 gbb0/io37rsb0 80 gbc1/io36rsb0 81 gbc0/io35rsb0 82 io32rsb0 83 io28rsb0 84 io25rsb0 85 io22rsb0 86 io19rsb0 87 vccib0 88 gnd 89 vcc 90 io15rsb0 91 io13rsb0 92 io11rsb0 93 io09rsb0 94 io07rsb0 95 gac1/io05rsb0 96 gac0/io04rsb0 97 gab1/io03rsb0 98 gab0/io02rsb0 99 gaa1/io01rsb0 100 gaa0/io00rsb0 100-pin vqfp pin number a3pn125 function
proasic3 nano flash fpgas revision 8 3-13 100-pin vqfp pin number a3pn125z function 1gnd 2 gaa2/io67rsb1 3 io68rsb1 4 gab2/io69rsb1 5 io132rsb1 6 gac2/io131rsb1 7 io130rsb1 8 io129rsb1 9gnd 10 gfb1/io124rsb1 11 gfb0/io123rsb1 12 vcomplf 13 gfa0/io122rsb1 14 vccplf 15 gfa1/io121rsb1 16 gfa2/io120rsb1 17 vcc 18 vccib1 19 gec0/io111rsb1 20 geb1/io110rsb1 21 geb0/io109rsb1 22 gea1/io108rsb1 23 gea0/io107rsb1 24 vmv1 25 gndq 26 gea2/io106rsb1 27 geb2/io105rsb1 28 gec2/io104rsb1 29 io102rsb1 30 io100rsb1 31 io99rsb1 32 io97rsb1 33 io96rsb1 34 io95rsb1 35 io94rsb1 36 io93rsb1 37 vcc 38 gnd 39 vccib1 40 io87rsb1 41 io84rsb1 42 io81rsb1 43 io75rsb1 44 gdc2/io72rsb1 45 gdb2/io71rsb1 46 gda2/io70rsb1 47 tck 48 tdi 49 tms 50 vmv1 51 gnd 52 vpump 53 nc 54 tdo 55 trst 56 vjtag 57 gda1/io65rsb0 58 gdc0/io62rsb0 59 gdc1/io61rsb0 60 gcc2/io59rsb0 61 gcb2/io58rsb0 62 gca0/io56rsb0 63 gca1/io55rsb0 64 gcc0/io52rsb0 65 gcc1/io51rsb0 66 vccib0 67 gnd 68 vcc 69 io47rsb0 70 gbc2/io45rsb0 100-pin vqfp pin number a3pn125z function 71 gbb2/io43rsb0 72 io42rsb0 73 gba2/io41rsb0 74 vmv0 75 gndq 76 gba1/io40rsb0 77 gba0/io39rsb0 78 gbb1/io38rsb0 79 gbb0/io37rsb0 80 gbc1/io36rsb0 81 gbc0/io35rsb0 82 io32rsb0 83 io28rsb0 84 io25rsb0 85 io22rsb0 86 io19rsb0 87 vccib0 88 gnd 89 vcc 90 io15rsb0 91 io13rsb0 92 io11rsb0 93 io09rsb0 94 io07rsb0 95 gac1/io05rsb0 96 gac0/io04rsb0 97 gab1/io03rsb0 98 gab0/io02rsb0 99 gaa1/io01rsb0 100 gaa0/io00rsb0 100-pin vqfp pin number a3pn125z function
package pin assignments 3-14 revision 8 100-pin vqfp pin number a3pn250 function 1gnd 2 gaa2/io67rsb3 3 io66rsb3 4 gab2/io65rsb3 5 io64rsb3 6 gac2/io63rsb3 7 io62rsb3 8 io61rsb3 9gnd 10 gfb1/io60rsb3 11 gfb0/io59rsb3 12 vcomplf 13 gfa0/io57rsb3 14 vccplf 15 gfa1/io58rsb3 16 gfa2/io56rsb3 17 vcc 18 vccib3 19 gfc2/io55rsb3 20 gec1/io54rsb3 21 gec0/io53rsb3 22 gea1/io52rsb3 23 gea0/io51rsb3 24 vmv3 25 gndq 26 gea2/io50rsb2 27 geb2/io49rsb2 28 gec2/io48rsb2 29 io47rsb2 30 io46rsb2 31 io45rsb2 32 io44rsb2 33 io43rsb2 34 io42rsb2 35 io41rsb2 36 io40rsb2 37 vcc 38 gnd 39 vccib2 40 io39rsb2 41 io38rsb2 42 io37rsb2 43 gdc2/io36rsb2 44 gdb2/io35rsb2 45 gda2/io34rsb2 46 gndq 47 tck 48 tdi 49 tms 50 vmv2 51 gnd 52 vpump 53 nc 54 tdo 55 trst 56 vjtag 57 gda1/io33rsb1 58 gdc0/io32rsb1 59 gdc1/io31rsb1 60 io30rsb1 61 gcb2/io29rsb1 62 gca1/io27rsb1 63 gca0/io28rsb1 64 gcc0/io26rsb1 65 gcc1/io25rsb1 66 vccib1 67 gnd 68 vcc 69 io24rsb1 70 gbc2/io23rsb1 71 gbb2/io22rsb1 72 io21rsb1 100-pin vqfp pin number a3pn250 function 73 gba2/io20rsb1 74 vmv1 75 gndq 76 gba1/io19rsb0 77 gba0/io18rsb0 78 gbb1/io17rsb0 79 gbb0/io16rsb0 80 gbc1/io15rsb0 81 gbc0/io14rsb0 82 io13rsb0 83 io12rsb0 84 io11rsb0 85 io10rsb0 86 io09rsb0 87 vccib0 88 gnd 89 vcc 90 io08rsb0 91 io07rsb0 92 io06rsb0 93 gac1/io05rsb0 94 gac0/io04rsb0 95 gab1/io03rsb0 96 gab0/io02rsb0 97 gaa1/io01rsb0 98 gaa0/io00rsb0 99 gndq 100 vmv0 100-pin vqfp pin number a3pn250 function
proasic3 nano flash fpgas revision 8 3-15 100-pin vqfp pin number a3pn250z function 1gnd 2 gaa2/io67rsb3 3 io66rsb3 4 gab2/io65rsb3 5 io64rsb3 6 gac2/io63rsb3 7 io62rsb3 8 io61rsb3 9gnd 10 gfb1/io60rsb3 11 gfb0/io59rsb3 12 vcomplf 13 gfa0/io57rsb3 14 vccplf 15 gfa1/io58rsb3 16 gfa2/io56rsb3 17 vcc 18 vccib3 19 gfc2/io55rsb3 20 gec1/io54rsb3 21 gec0/io53rsb3 22 gea1/io52rsb3 23 gea0/io51rsb3 24 vmv3 25 gndq 26 gea2/io50rsb2 27 geb2/io49rsb2 28 gec2/io48rsb2 29 io47rsb2 30 io46rsb2 31 io45rsb2 32 io44rsb2 33 io43rsb2 34 io42rsb2 35 io41rsb2 36 io40rsb2 37 vcc 38 gnd 39 vccib2 40 io39rsb2 41 io38rsb2 42 io37rsb2 43 gdc2/io36rsb2 44 gdb2/io35rsb2 45 gda2/io34rsb2 46 gndq 47 tck 48 tdi 49 tms 50 vmv2 51 gnd 52 vpump 53 nc 54 tdo 55 trst 56 vjtag 57 gda1/io33rsb1 58 gdc0/io32rsb1 59 gdc1/io31rsb1 60 io30rsb1 61 gcb2/io29rsb1 62 gca1/io27rsb1 63 gca0/io28rsb1 64 gcc0/io26rsb1 65 gcc1/io25rsb1 66 vccib1 67 gnd 68 vcc 69 io24rsb1 70 gbc2/io23rsb1 71 gbb2/io22rsb1 72 io21rsb1 100-pin vqfp pin number a3pn250z function 73 gba2/io20rsb1 74 vmv1 75 gndq 76 gba1/io19rsb0 77 gba0/io18rsb0 78 gbb1/io17rsb0 79 gbb0/io16rsb0 80 gbc1/io15rsb0 81 gbc0/io14rsb0 82 io13rsb0 83 io12rsb0 84 io11rsb0 85 io10rsb0 86 io09rsb0 87 vccib0 88 gnd 89 vcc 90 io08rsb0 91 io07rsb0 92 io06rsb0 93 gac1/io05rsb0 94 gac0/io04rsb0 95 gab1/io03rsb0 96 gab0/io02rsb0 97 gaa1/io01rsb0 98 gaa0/io00rsb0 99 gndq 100 vmv0 100-pin vqfp pin number a3pn250z function

revision 8 4-1 4 ? datasheet information list of changes the following table lists critical changes that were made in the current vers ion of the proasic3 nano datasheet. revision changes page revision 8 (april 2010) references to differential inputs we re removed from the datasheet, since proasic3 nano devices do not support differential inputs (sar 21449). n/a the "proasic3 nano device status" table is new. ii the jtag dc voltage was revised in table 2-2 ? recommended operating conditions 1, 2 (sar 24052). the maximum value for vpump programming voltage (operation mode) was changed fr om 3.45 v to 3.6 v (sar 25220). 2-2 the highest temperature in table 2-6 ? temperature and voltage derating factors for timing delays was changed to 100oc. 2-5 the typical value for a3 pn010 was revised in table 2-7 ? quiescent supply current characteristics . the note was revised to remove the statement that values do not include i/o static contribution. 2-6 the following tables were updated with available information: table 2-8 ? summary of i/o input buffer power (per pin) ? default i/o software settings table 2-9 ? summary of i/o output buffer power (per pin) ? default i/o software settings1 table 2-10 ? different components contributing to dynamic power consumption in proasic3 nano devices table 2-14 ? summary of maximum and minimum dc input and output levels table 2-18 ? summary of i/o timing c haracteristics?softwar e default settings (at 35 pf) table 2-19 ? summary of i/o timing c haracteristics?softwar e default settings (at 10 pf) 2-6 through 2-18 table 2-22 ? i/o weak pull-up/pull-down resistances was revised to add wide range data and correct the formulas in the table notes (sar 21348). 2-19 the text introducing table 2-24 ? duration of short circuit event before failure was revised to state six months at 100 instead of three months at 110 for reliability concerns. the row for 110 was removed from the table. 2-20 table 2-26 ? i/o input rise time, fall time, and related i/o reliability was revised to give values with schmitt trigger disabled and enabled (sar 24634). the temperature for reliab ility was changed to 100oc. 2-21 table 2-33 ? minimum and maximum dc input and output levels for 3.3 v lvcmos wide range and the timing tables in the "single-ended i/o characteristics" section were updated with available information. the timing tables for 3.3 v lvcmos wide range are new. 2-22 the following sentence was deleted from the "2.5 v lvcmos" section : "it uses a 5 v?tolerant input buffer and push-pull output buffer." 2-30
datasheet information 4-2 revision 8 revision 8 (continued) values for t ddrisud and f ddrimax were updated in table 2-62 ? input ddr propagation delays . values for f ddomax were added to table 2-64 ? output ddr propagation delays (sar 23919). 2-46 , 2-48 table 2-67 ? a3pn010 global resource through table 2-70 ? a3pn060 global resource were updated with available information. 2-54 through 2-55 table 2-73 ? proasic3 nan o ccc/pll specification was revised (sar 79390). 2-57 revision 7 (january 2010) all product tables and pin tables were updated to show clearly that a3pn030 is available only in the z feature at this time, as a3pn030z. the nano-z feature grade devices are designated with a z at the end of the part number. n/a the "68-pin qfn" and "100-pin vqfp" pin tables for a3pn030 were removed. only the z grade for a3pn030 is available at this time. n/a revision 6 (august 2009) the note for a3pn030 in the "proasic3 nano devices" table was revised. it states a3pn030 is available in the z feature grade only. i revision 5 (march 2009) the "68-pin qfn" pin table for a3pn030 is new. 3-7 the "48-pin qfn" , "68-pin qfn" , and "100-pin vqfp" pin tables for a3pn030z are new. 3-3 , 3-7 , 3-9 the "100-pin vqfp" pin table for a3pn060z is new. 3-11 the "100-pin vqfp" pin table for a3pn125z is new 3-13 the "100-pin vqfp" pin table for a3pn250z is new. 3-15 revision 4 (february 2009) the "100-pin vqfp" pin table for a3pn030 is new. 3-10 revision 3 (february 2009) all references to speed grade ?f were removed from this document. n/a the "i/os with advanced i/o standards" section was revised to add definitions of hot-swap and cold-sparing. 1-7 the "100-pin vqfp" pin table for a3pn030 is new. 3-10 revision 2 (november 2008) the "proasic3 nano devices" table was revised to change the maximum user i/os for a3pn020 and a3pn030. the following table note was removed: "six chip (main) and three quadrant global networks are available for a3pn060 and above." i the qn100 package was removed for all devices. n/a the "device marking" section is new. iii the "100-pin qfn" section was removed. n/a revision 1 (october 2008) the a3pn030 device was added to product tables and replaces a3p030 entries that were formerly in the tables. i to iv the "wide range i/o support" section is new. 1-7 the "i/os per package" table was updated to add the following information to table note 4: "for nano devices, the vq100 package is offered in both leaded and rohs-compliant versions. all other packages are rohs-compliant only." ii the "proasic3 nano product available in the z feature grade" section was updated to remove qn100 for a3pn250. iv the "general description" section was updated to give correct information about number of gates and dual-port ram for proasic3 nano devices. 1-1 revision changes page
proasic3 nano flash fpgas revision 8 4-3 revision 1 (continued) the device architecture figures, figure 1-3 ? proasic3 nano device architecture overview with two i/o banks (a3pn060 and a3pn125) through figure 1-4 ? proasic3 nano device architecture overview with four i/o banks (a3pn250) , were revised. figure 1-1 ? proasic3 device architecture overview with two i/o banks and no ram (a3pn010 and a3pn030) is new. 1-3 through 1-4 the "pll and ccc" section was revised to include information about ccc-gls in a3pn020 and smaller devices. 1-6 table 2-2 ? recommended operating conditions 1, 2 was revised to add vmv to the vcci row. the following table note wa s added: "vmv pins must be connected to the corresponding vcci pins." 2-2 the values in table 2-7 ? quiescent supply current characteristics were revised for a3pn010, a3pn015, and a3pn020. 2-6 a table note, "all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range, as specified in the jesd 8-b specification," was added to table 2-14 ? summary of maximum and minimum dc input and output levels , table 2-18 ? summary of i/o timing characteristics?s oftware default se ttings (at 35 pf) , and table 2-19 ? summary of i/o timing characteristics?software default settings (at 10 pf) . 2-16 , 2-18 3.3 v lvcmos wide range was added to table 2-21 ? i/o output buffer maximum resistances 1 and table 2-23 ? i/o short currents iosh/iosl . 2-19 , 2-20 the "48-pin qfn" pin diagram was revised. 3-2 note 2 for the "48-pin qfn" , "68-pin qfn" , and "100-pin vqfp" pin diagrams was added/changed to "the die attach paddle of the package is tied to ground (gnd)." 3-2 , 3-5 , 3-9 the "100-pin vqfp" pin diagram was revised to move the pin ids to the upper left corner instead of the upper right corner. 3-9 revision changes page
datasheet information 4-4 revision 8 datasheet categories categories in order to provide the latest information to des igners, some datasheet parameters are published before data has been fully characterized from silicon devices. the data provided for a given device, as highlighted in the "proasic3 nano device status" table on page ii , is designated as either "product brief," "advance," "preliminary," or "production." th e definitions of these categories are as follows: product brief the product brief is a summarized version of a data sheet (advance or producti on) and contains general product information. this document gives an overvi ew of specific device and family information. advance this version contains initial estimated information bas ed on simulation, other products, devices, or speed grades. this information can be used as estimates, bu t not for production. this label only applies to the dc and switching characteristics chapter of the da tasheet and will only be used when the data has not been fully characterized. preliminary the datasheet contains information based on simulation and/or initial characterization. the information is believed to be correct, but changes are possible. unmarked (production) this version contains information that is considered to be final. export administration regulations (ear) the products described in this document are subj ect to the export administ ration regulations (ear). they could require an approved export license prior to export from the united st ates. an export includes release of product or disclosure of technology to a foreign national inside or outside the united states. actel safety critical, life support, and high-reliability applications policy the actel products described in this advance status document may not have completed actel?s qualification process. actel may amend or enhanc e products during the pr oduct introduction and qualification process, resulting in changes in device functionality or performance. it is the responsibility of each customer to ensure the fitness of any actel pr oduct (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. consult actel?s terms and conditions for specific liab ility exclusions relating to life-support applications. a reliability report covering all of actel?s products is available on the actel website at http://www.actel.com/documents/ort_report.pdf . actel also offers a variety of enhanced qualification and lot acceptance screening procedures. contact your local actel sales office for additional reliability information.

actel is the leader in low power fpgas and mixed signal fpgas and offers the most comprehensive portfolio of system and power management solutions. power matters. learn more at www.actel.com. actel corporation 2061 stierlin court mountain view, ca 94043-4655 usa phone 650.318.4200 fax 650.318.4600 actel europe ltd. river court,meadows business park station approach, blackwater camberley surrey gu17 9ab united kingdom phone +44 (0) 1276 609 300 fax +44 (0) 1276 607 540 actel japan exos ebisu buillding 4f 1-24-14 ebisu shibuya-ku tokyo 150 japan phone +81.03.3445.7671 fax +81.03.3445.7668 http://jp.actel.com actel hong kong room 2107, china resources building 26 harbour road wanchai, hong kong phone +852 2185 6460 fax +852 2185 6488 www.actel.com.cn 51700111-8/4.10 ? actel corporation. all rights reserved. actel, actel fusion, igloo, libero, pigeon point, pro asic, smartfusion and the associ ated logos are trademarks or registered trademarks of actel corporation. all other trademarks and service marks are the property of their resp ective owners.


▲Up To Search▲   

 
Price & Availability of A3PN250-1VQ100

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X